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Solution for a Semi-Permeable
Interface Crack Between Two
Dissimilar Piezoelectric Material
A semi-permeable interface crack in dissimilar piezoelectric materials is studied in de-
tail. Attention is focused on the influence induced from the permittivity of the medium
inside the crack gap on the near-tip singularity and the crack tip energy release rate
(ERR). The Stroh complex variable theory (Stroh, A. N., 1958, Philos. Mag. 3, pp. 625–
646; Ting, T. C. T., Int. J. Solids Struct., 22, pp. 965–983) is used to obtain the solution,
from which some useful numerical results for 21 kinds of dissimilar piezoelectric mate-
rials are calculated. They are combined from seven kinds of commercial piezoelectric
ceramics. The distribution of the normal electric displacement component (NEDC) along
the interface crack is assumed to be uniform and the corresponding problem is then
deduced to a Hilbert problem with an unknown NEDC. Solving the Hilbert problem and
determining the near-tip field for each of the 21 bimaterials, we determine the crack tip
singularities and find that the crack-tip singularity for a certain combination of two
dissimilar piezoelectric materials can be either oscillatory or nonoscillatory when the
poling axes of both piezoelectric materials are perpendicular to the interface crack.
Energy analyses for PZT-4/BaTiO3 as a typical nonoscillatory class bimaterial and
those for PZT–5H/BaTiO3 as a typical oscillatory class bimaterial are specially studied
in detail under four different conditions: (i) the crack gap is filled with air or vacuum; (ii)
the crack gap is filled with silicon oil to avoid discharge; (iii) the crack gap is conduct-
ing; and (iv) the electrically impermeable crack. Detailed comparisons are performed
among the four cases. We conclude that the different values of the permittivity have no
influence on the crack tip singularity but have significant influences on the crack tip ERR
under the combined electromechanical loading. We also conclude that the previous in-
vestigations under the insulating crack model are incorrect or misleading since the model
overestimates the effect of the electric field on the ERR very much and the results of the
ERR for the impermeable crack show significant discrepancies from those for the semi-
permeable crack. Whereas the previous investigations under the conducting crack model
may be accepted in a tolerant, way, the results of the ERR show very small discrepancies
from those for the semi-permeable crack model, especially when it filled with silicon
oil. �DOI: 10.1115/1.2711232�

Keywords: piezoelectric material, semi-permeable interface crack, permittivity, the crack
tip ERR, insulating crack, conducting crack

1 Introduction
Interface crack problems in dissimilar anisotropic piezoelectric

materials have received considerable attention in the past 20 years
�3–16�. Research in this area is motivated by strong engineering
demands to design new composite materials with mechanical–
electric coupling properties. However, all previous efforts were
either under the impermeable crack assumption �charge free� or
under the permeable crack assumption. To the present authors’
knowledge, there are no attempts in the literature, which account
for the permittivity of medium inside an interface crack gap, al-
though the semi-permeable crack �or finite permeable crack� has
already been proposed by Parton and Kudryavtsev �17� and Hao
and Shen �18� and widely used by many researchers in homog-
enous piezoelectric materials with cracks �19–27�. The key feature
of the semi-permeable crack is to account for the permittivity of
the medium inside the crack gap, from which the electric bound-
ary condition along the crack faces should involve both mechani-
cal quantities and electric quantities and in this way it becomes a

nonlinear model as shown in McMeeking’s figures �22–24� and as
pointed out by Chen and Hasebe �27�. On one hand, under the
impermeable crack assumption, efforts have been done by a num-
ber of investigators in the aspect of the interface fracture for pi-
ezoelectric bimaterials. For example, Kuo and Barnett �5� studied
the interfacial impermeable cracks in bonded piezoelectric half-
spaces and Suo et al. �6� solved the problem of an interface im-
permeable crack between two dissimilar anisotropic piezoelectric
media. Qin and Yu �9� studied an arbitrary-oriented plane crack
terminating at the interface between dissimilar piezoelectric ma-
terials. Beom and Atlury �8� studied the near-tip field and Ru et al.
�10� researched electric-field induced interfacial cracking in
multilayer electrostrictive for two typical cases; �1� an interface
crack lying between an electrode layer and ceramic; and �2� an
interface crack with one tip at the embedded electrode edge. How-
ever, these results might be misleading as emphasized by Mc-
Meeking �22–24� since the unphysical electric boundary condi-
tion: the impermeable crack assumption or the charge-free
condition was imposed on the crack surfaces without any consid-
eration of the permittivity of the medium inside the crack gap.
Dunn �19� and Sosa and Khutoryansky �20� and many others have
already found that the impermeable crack assumption would lead
to erroneous results and the permittivity of medium inside the
crack gap could not be entirely neglected. More recently, Mc-

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received April 28, 2006; final manuscript
received September 27, 2006. Review conducted by Zhigang Suo.
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Meeking �22–24� pointed out that, in fact, cracks in the engineer-
ing are usually filled with air/vacuum, and thus the permittivity of
the medium inside the crack is about 1000 times smaller than
those of commercial piezoelectric materials, but it is never zero
and then the normal electric displacement inside the crack gap
must not vanish. On the other hand, some previous researchers
used the permeable crack model to study the interface crack.
However, this model is only valid in such a way that the crack in
piezoelectric ceramics is slit enough for the electric field to pen-
etrate into it. By considering the permittivity of air or vacuum
inside the crack gap, the semi-permeable or finite permeable elec-
tric boundary condition has been proposed by Parton and
Kudryavtsev �17� and Hao and Shen �18�. The key feature of this
condition is the correct connection condition across the interface
between air or vacuum and piezoelectric ceramic �22–24�. By
comparing it with both impermeable and permeable models, the
semi-permeable electric boundary condition on the crack faces
appears to be a physically reasonable model �21–24� as reviewed
by Chen and Hasebe �27�. Although the semi-permeable electric
boundary condition has been successfully used to solve the crack
problems in homogeneous piezoelectric media, to the authors’
knowledge no solutions have been presented in the literature for
the interface crack problems between two dissimilar piezoelectric
materials.

The goal of this research is to obtain the fundamental solution
accounting for the permittivity of the medium inside an interface
crack gap between two dissimilar piezoelectric materials. The pol-
ing axes of the two dissimilar piezoelectrics are assumed to be
perpendicular to the interface. The generalized Stroh formalism
proposed by Suo et al. �6� for an impermeable interface crack is
used to satisfy the connection condition across the interface be-
tween the medium inside the crack gap and each of the two dis-
similar piezoelectric materials. In general, for purely elastic ma-
terial, it is well known that the case of remote loading can be
readily reduced to the case of crack-face loading by the superpo-
sition principle. The solution can be divided into two parts: the
homogeneous solution without the crack and the disturbed solu-
tion including the crack subjected to surface tractions. However,
when the piezoelectric bimaterial with an interface crack is loaded
at infinity, the superposition principle will lead to some confusion
because the electric field exists inside the crack and the electric
displacement on the crack surface cannot be known beforehand.
In the present analysis, we successfully avoid using the superpo-
sition principle and directly consider the piezoelectric bimaterials
loaded at infinity. After performing some manipulations, the semi-
permeable interface crack problem is deduced to a Hilbert prob-
lem with an unknown normal electric displacement component on
the crack surfaces. After solving the Hilbert problem, the full
near-tip fields are determined in the explicit forms and numerical
values of the field oscillatory index � and another index � are
given for 21 types of piezoelectric bimaterials combined, respec-
tively, by seven kinds of piezoelectric materials PZT-4, PZT-5H,
PZT-6B, PZT-7A, P-7, BaTiO3, and PZT–PIC whose material
constants were reported in the literature. It is concluded that the
singularity at a semi-permeable interface crack tip for a certain
combination of dissimilar piezoelectric materials can either be os-
cillatory or nonoscillatory when the poling axes of both piezoelec-
tric materials are perpendicular to the interface crack. That is, the
crack tip singularity may either be governed by −1/2± i� �called
the � class bimaterial� or by −1/2±� �called the � class bimate-
rial�, depending on the combination of the two dissimilar piezo-
electric materials. It is concluded that the following 14 kinds of
dissimilar piezoelectric materials: PZT-4/PZT-5H, PZT-4/PZT-6B,
PZT-4/PZT-7A, PZT-4/P-7, PZT-4/BaTiO3, PZT-5H/PZT-7, PZT-
5H/PZT-PIC 151, PZT-6B/BaTiO3, PZT-7A/P-7,
PZT-7A/BaTiO3, PZT-7A/PZT-PIC 151, P-7 /BaTiO3, P-7/PZT-
PIC 151, and BaTiO3/PZT-PIC 151 belong to the nonoscillatory
singularity or the � class bimaterial, whereas the following seven
kinds: PZT-4/PZT-PIC 151, PZT-5H/PZT-6B, PZT-5H/PZT-7A,

PZT-5H/BaTiO3, PZT-6B/PZT-7A, PZT-6B/P-7, and PZT-6B/
PZT-PIC 151 belong to the oscillatory singularity or the � class
bimaterial. These two kinds of crack tip singularity are different
from the classical inverse square root singularity in two different
ways. Those in the first only change the magnitude of the crack tip
singularity. Those in the second yield the well-known oscillatory
singularity �27�.

Subsequently, the stress intensity factors and the electric dis-
placement intensity factor �EDIF� at the interface crack tip are
obtained, which uniquely characterize the near-tip singular stress
fields and singular electric field. By using the crack closure inte-
gral, the crack tip energy release rate �ERR� is also given in the
explicit forms. In order to provide some useful numerical results,
special attention is focused on PZT-4/BaTiO3 as a typical � class
bimaterial and PZT-5H/BaTiO3 as a typical � class bimaterial,
respectively. Four different crack models are considered: �i� the
crack gap is filled with air or vacuum; �ii� the crack gap is filled
with silicon oil to avoid discharge �29,30�; �iii� the crack gap is
assumed to be fully permeable, i.e., the so-called permeable crack
with infinite large permittivity �e.g., the gap is filled with NaCI
solution �31��; and �iv� the electrically impermeable crack. De-
tailed numerical results show that the permittivity of the medium
inside the crack gap has a significant influence on the effect of the
applied electric field on the crack tip ERR. As those in homog-
enous piezoelectric materials, the impermeable assumption with
infinitesimal or negligible permittivity significantly overestimates
the effect of the electric field on the crack tip ERR significantly,
which yields significant discrepancies of the ERR from those for
the semi-permeable crack. Whereas the permeable crack with in-
finite large permittivity underestimates the effect of the electric
field but in a tolerant way, it yields small discrepancies of the
ERR from those for the semi-permeable crack, especially when it
is filled with silicon oil. What’s more, it is seen that the semi-
permeable crack filled with silicon oil yields much smaller values
of the crack tip ERR than those for the semi-permeable crack
filled with air or vacuum under the same magnitude of the
mechanical–electric loading. It is concluded that under the elec-
tromechanical loading at infinity, the permittivity of the medium
inside an interface crack gap plays an important role in evaluating
the interface crack stability since it influences the crack-tip ERR
significantly, although the permittivity has no influence on the
interface crack tip singularity. It should be emphasized that the
analysis presented in this paper is a linear piezoelectric analysis,
in which the near-tip nonlinearity has been entirely neglected.
Obviously, the fracture criterion in dissimilar piezoelectric mate-
rials should be concerned with some material microstructure such
as the near-tip domain switching or microcracks and the mesos-
copic failure mechanism. Subsequent investigations into these
topics are absolutely needed.

2 Analytical Solutions and Near-Tip Singularity for an
Interface Crack

Consider an interface crack of length 2a between two dissimilar
piezoelectric materials with the poling direction perpendicular to
the interface �see Fig. 1�. Assume that the remote uniform
mechanical–electric loads, respectively denoted by �21

� , �22
� , �23

� ,
and E2

�, are acting on the infinitely large piezoelectric bimaterial
and along the direction perpendicular to the crack surfaces. All the
basic formulations of the generalized Stroh theory �6� are pre-
sented in Appendix A. As Parton and Kudryavtsev �17� and Hao
and Shen �18� proposed, the permittivity of the medium inside the
crack gap, denoted by �v, would play an important role in piezo-
electric fracture. In this section, as an initial attempt, the distribu-
tion of the normal electric displacement component along the in-
terface crack induced from the permittivity is assumed to no
longer be zero as the impermeable crack model; rather it is as-
sumed to be uniform and denoted by D2

0. This assumption is valid
when the poling directions of both materials are perpendicular to
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the interface crack. The finite permeable crack or the semi-
permeable crack can be formulated as follows �sometimes we ab-
breviated it as the PKHS crack model �27��

D2
0�u2

+ − u2
−� = − �v��+ − �−� �x1� � a �1a�

D2
+ = D2

−, �2j
+ = �2j

− = 0 �x1� � a �1b�

where the superscripts � and � refer to the upper and lower crack
surface, respectively; u2 is the displacement component normal to
the crack face; � is the electrical potential along the crack sur-
faces; and �v is the permittivity of the medium inside the interface
crack gap.

As pointed out by Suo et al. �6�, a crack may be thought of as
a low-capacitance medium carrying a potential drop. Thus, the
electric field inside the gap could be simply the potential differ-
ence divided by the gap width. It is well known that the electri-
cally permeable crack and the impermeable crack are two limita-
tions of Eq. �1� when setting the permittivity �v to be infinitely
large so that �+=�−, or infinitely small so that D2

+=D2
−=0, respec-

tively.
For the problem shown in Fig. 1, the continuity of the general-

ized stresses ��x1� across the x1 axis on both the bonded and
cracked segments requires that

B1f1�
+�x1� + B̄1f̄1�

−�x1� = B2f2�
−�x1� + B̄2f̄2�

+�x1�, �x1� � � �2�

where the subscript 1 and 2 separately indicate that the quantities
are defined in materials 1 and 2; the constant complex vectors B1
and B2 and unknown complex vector functions; and f1�z� and
f2�z� are given in Eqs. �A9� and �A4� of Appendix A, respectively.

Thus, the above formulation can be rearranged in the following
form

B1f1�
+�x1� − B̄2f̄2�

+�x1� = B2f2�
−�x1� − B̄1f̄1�

−�x1� �x1� � � �3�

Define a new analytical function as

��z� =�B1f1��z� − B̄2f̄2��z� , x2 	 0

B2f2��z� − B̄1f̄1��z� , x2 � 0
� �4�

and reduce Eq. �3� to

�+�x1� − �−�x1� = 0 �x1� � � �5�

The solution of Eq. �5� is then given as follows �32�

��z� = ���� �6�

where

���� = B1f1���� − B̄2f̄2���� = B2f2���� − B̄1f̄1���� �7�

Define the jump of the generalized displacements across the inter-
face

�u�x1� = u1
+�x1� − u2

−�x1� �8�

where u= �u1 ,u2 ,u3 ,��T denotes the generalized displacements
for piezoelectrics under generalized plane strain �see Eq. �A2� in
Appendix A�.

Combining Eqs. �A2�, �4�, and �6� yields

i�u��x1� = HB1f1�
+�x1� − H̄B2f2�

−�x1� − �Ȳ2 − Ȳ1����� �9�

where H, Y2, and Y1 are constant complex vectors �see Eq. �A10�
in Appendix A�. For piezoelectric bimaterials as shown in Fig. 1,
the continuity of displacements across the bonded interface re-
quires that a function defined as

g�z� = �B1f1��z� x2 	 0

H−1H̄B2f2��z� + H−1�Ȳ2 − Ȳ1����� x2 � 0� �10�

where g�z� is analytic in the whole plane except on the cracking
line.

Using Eqs. �A3�, �9�, and �10�, we can obtain

i�u��x1� = H�g+�x1� − g−�x1�� �11�

��x1� = g+�x1� + H̄−1Hg−�x1� − K0 �12�

where K0=H̄−1�Y2+ Ȳ2�����. On the interface crack faces, the
generalized stresses ��x1�=T0= �0,0 ,0 ,D2

0�T refer the traction-
free conditions and the uniform normal electric displacement
along the semi-permeable interface crack as shown in Fig. 1.
Equation �12� yields a nonhomogenous Riemann–Hilbert problem
as expressed in the following form

g+�x1� + H̄−1Hg−�x1� = K0 + T0 �x1� � a �13�

As a special case, when the piezoelectric bimaterial continuum
degenerates to a homogeneous one, the matrix H in Eq. �A10� can
be real. Thus, Eq. �13� can be degenerated into

g+�x1� + g−�x1� = ���� + T0 �x1� � a �14�

The solving procedure follows those developed by England �33�
and Suo et al. �6�, we can then obtain

g�z� =
���� + T0

2 �1 −
z

	z2 − a2
 +
c0 + c1z + ¯ + cnzn

	z2 − a2

�15�

where cn= �cn
�1� ,cn

�2� ,cn
�3� ,cn

�4��; whereas D2
0 and the constant vec-

tors cn are unknown. To find cn, we let z→� in Eq. �15� and find
that the condition of the stresses being bounded at infinity leads to

c1 = g��� = Bf����; cn = 0 �n 	 1� �16�

The remaining unknown constants c0 can be determined by
using the single-valued conditions of mechanical displacements
and electric potential. Considering Eq. �11�, these conditions re-
quire

Fig. 1 A semi-permeable interface crack of length 2a between
two dissimilar piezoelectric materials subjected to the far field
mechanical and electric loading
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�
Lc

g�z�dz = 0 �17�

where Lc is a clockwise closed-contour encircled the interface
crack. Substituting Eq. �15� into Eq. �17� results in c0=0.

Thus, the complex potential vector g�z� in Eq. �15� can be
finally expressed as

g�z� =
���� + T0

2
+

T� − T0

2

z
	z2 − a2

�18�

where T�=Bf����+ B̄f̄����= ��21
� ,�22

� ,�23
� ,D2

��T.
Considering the singular parts of the generalized stress fields at

the crack tip as the polar coordinates �r ,
�→0, we obtain from
Eqs. �12� and �18�

��r� =
	�a
	2�r

�T� − T0� �19�

The jump of the mechanical displacements and the drop of electric
potential along the crack gap �−a�x1�a� can be obtained from
Eqs. �11� and �18�

�u = u+ − u− = H�T� − T0�	a2 − x1
2 �20�

In order to determine the normal electric displacement component
D2

0 along the crack surfaces induced from the permittivity of the
medium inside the crack gap as Parton and Kudryavtsev �17� and
Hao and Shen �18� discussed, the semi-permeable electric bound-
ary condition �1a� should be used atpresent. By substituting Eq.
�20� into Eq. �1a�, we can obtain

D2
0 = − �v

�+ − �−

u2
+ − u2

− =
H41�21

� + H42�22
� + H43�23

� + H44�D2
� − D2

0�
H21�21

� + H22�22
� + H23�23

� + H24�D2
� − D2

0�
�21�

where Hij �i , j=1,2 ,3 ,4� are elements of the 44 matrix H
whose definition has been given in Eq. �A10� of Appendix A.

On one hand, for a homogenous piezoelectric material with real
material matrix H, the singularity at the semi-permeable crack tip
is the well-known classical inverse square root singularity and the
stress intensity factors KI, KII, and KIII and the electric displace-
ment intensity factor KD can be expressed as

KI = 	�a�22
� , KII = 	�a�21

� , KIII = 	�a�23
� , KD = 	�a�D2

� − D2
0�

�22�

At this moment, the crack tip ERR in a cracked homogenous
piezoelectric material can be obtained by using the crack closure
integral. It should be emphasized that for a semi-permeable crack
the crack tip ERR and the total potential ERR are different as
pointed out by McMeeking �24�. With the right crack tip extend-
ing by a small amount �a, the crack tip ERR can be expressed as

G = Lim
�a→0

1

2�a�0

�a

�T�r��u��a − r�dr �23�

By substituting Eqs. �19� and �20� into Eq. �23�, together with Eq.
�22�, the crack tip ERR in terms of the stress intensity factors is
obtained for the homogenous piezoelectric material

G = 1
4KTHK �24�

where K= �KII ,KI ,KIII ,KD�T. In deriving Eq. �24�, the identity

�
0

1

tq�1 − t�−qdt = q�/sin q� �Re�q�� � 1 �25�

has been used with q=−1/2.

On the other hand, for the dissimilar piezoelectric materials
with complex material matrix H, the homogeneous Hilbert prob-
lem of Eq. �13� should be considered in more detail, which can be
expressed in the following form

g+�x1� + H̄−1Hg−�x1� = 0 �x1� � a �26�

A general solution can be sought in the form �6�

h�z� = wz−1/2+i�� �27�

where w is now a four-element column vector and �� an arbitrary
number, both are to be determined. Substituting Eq. �27� into Eq.
�26� gives an eigenvalue problem

H̄w = e2���Hw �28�

By separating the matrix H into a real part D and an imaginary W,
Eq. �28� can be rewritten as

�D−1W + i�I�w = 0 �29�

where

� = − tanh�����, or �� = −
1

�
tanh–1��� =

1

2�
ln

1 − �

1 + �

�30�

It is well known that the characteristic value problem Eq. �29�
leads to the following characteristic equation

�D−1W + i�I� = �4 + 2b�2 + c = 0 �31�

where �·� denotes the determinant of a matrix and

b = 1
4 tr��D−1W�2�, c = �D−1W� �32�

By solving the characteristic equation Eq. �31�, the roots of Eq.
�31� can then be expressed as

�1,2 = ± ��b2 − c�1/2 − b�1/2 �33a�

�3,4 = ± i��b2 − c�1/2 + b�1/2 �33b�

It is seen from Eqs. �33a� and �33b� that one pair of roots is real
and the other is purely imaginary. Thus, we can denote the four
roots of �� corresponding to �� ��=1,2 ,3 ,4� as �, −�, i�, and
−i�, respectively, where both � and � are real numbers. After
doing this, we get

� =
1

�
tanh−1��b2 − c�1/2 − b�1/2 �34a�

� =
1

�
tanh−1��b2 − c�1/2 + b�1/2 �34b�

Therefore, the associated linear independent eigenvectors w�

��=1,2 ,3 ,4� can then be determined by the characteristic value
problem Eq. �29�, and the four eigenpairs should have the follow-
ing structures

��,w1�, �− �,w2�, �i�,w3�, �− i�,w4� �35�
Here, we should note the recent work by Ou and Wu �34� who

studied an impermeable interface crack in dissimilar piezoelectric
materials and have shown an interesting singularity theorem. They
found that the two singularity parameters � and � cannot be non-
zero simultaneously for all transversely isotropic piezoelectric bi-
material combinations selected by them. This leads to the classi-
fication of piezoelectric bimaterials, i.e., the bimaterials can be
divided into two groups: the �-class bimaterials with vanishing �
and nonoscillating singularity, and the �-class bimaterials with
vanishing � and oscillating singularity. However, no one in the
literature has accounted for the fact that whether the interesting
singularity theorem �34,35� holds in the semi-permeable interface
crack. In other words, whether and how the permittivity of the
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medium inside the interface crack gap influences the two singular
parameters � and � for a certain combination of two dissimilar
piezoelectric materials are still unclear to date.

Motivated by strong engineering demands to design new piezo-
electric composite materials which are always made of two phase
piezoelectric materials, the singularity analyses at a semi-
permeable interface crack tip with the singularity index � or � and
the associated linear independent eigenvector matrices w are ab-
solutely necessary. In this section, we use seven piezoelectric ma-
terials: PZT-4, PZT-5H, PZT-6B, PZT-7A, P-7, BaTiO3, and PZT-
PIC 151 to construct 21 kinds of dissimilar piezoelectric
materials: PZT-4/PZT-5H, PZT-4/PZT-6B, PZT-4/PZT-7A, PZT-4/
P-7, PZT-4/BaTiO3, PZT-4/PZT-PIC 151, PZT-5H/PZT-6B, PZT-
5H/PZT-7A, PZT-5H/PZT-7, PZT-5H/BaTiO3, PZT-5H/PZT-PIC
151, PZT-6B/PZT-7A, PZT-6B/P-7, PZT-6B/BaTiO3, PZT-6B/
PZT-PIC 151, PZT-7A/P-7, PZT-7A/BaTiO3 PZT-7A/PZT-PIC
151, P-7/BaTiO3, P-7/PZT-PIC 151, and BaTiO3/PZT-PIC 151.
The material constants of the seven kinds of piezoelectric materi-
als are listed in Table 1. Numerical values of the singularity index
� and � for the 21 kinds of bimaterials are computed by Eqs.
�34a� and �34b� and listed in Appendix B, whereas those for the
matrices w are determined by Eq. �29� and also listed in Appendix
B. It is found that when the poling axes of the two dissimilar
piezoelectric materials are perpendicular to the interface crack,
there is no coexistence of the singular parameters � and � at the
semi-permeable interface crack tip for all 21 kinds of dissimilar
piezoelectric combinations. This means that the singularity for a
certain combination of dissimilar piezoelectric materials can ei-
ther be oscillatory or nonoscillatory. That is, the crack tip singu-
larity may either be governed by −1/2± i� or by −1/2±�, de-
pending on the combination of the two dissimilar piezoelectric
materials. As a result, the singularity theorem derived by Ou and
Wu �34� for an impermeable interface crack in dissimilar piezo-
electric materials has been proven to still be valid in the present
semi-permeable interface crack. This means that the permittivity
has no influence on the interface crack singularity. Indeed, piezo-
electric bimaterials with a semi-permeable interface crack should
be divided into two groups: the �-class bimaterials with �=0 that
show nonoscillating singularity and the �-class bimaterials with
�=0 that show well-known oscillating singularity. It is seen from
Appendix B that the 14 kinds of dissimilar piezoelectric materials:
PZT-4/PZT-5H, PZT-4/PZT-6B, PZT-4/PZT-7A, PZT-4/P-7,
PZT-4/BaTiO3, PZT-5H/PZT-7, PZT-5H/PZT-PIC 151, PZT-6B/
BaTiO3, PZT-7A/P-7, PZT-7A/BaTiO3, PZT-7A/PZT-PIC 151,
P-7/BaTiO3, P-7/PZT-PIC 151, and BaTiO3/PZT-PIC 151 belong
to the nonoscillatory singularity, whereas the seven kinds: PZT-4/
PZT-PIC 151, PZT-5H/PZT-6B, PZT-5H/PZT-7A, PZT-5H/
BaTiO3, PZT-6B/PZT-7A, PZT-6B/P-7, and PZT-6B/PZT-PIC 151
belong to the oscillatory singularity.

Furthermore, we should consider the inherent relations among
eigenvectors in the present case. When both � and � are nonzero,

Ting �2� and Suo et al. �6� had already concluded that the eigen-
vectors w� satisfy certain orthogonal relations based on the four
distinct singularity parameters ��. However, at present � and � are
not nonzero simultaneously and the singularity analyses will lead
to the repeated eigenvalue either for the �-class or the �-class
bimaterials. Hence some new inherent relations should be intro-
duced.

After some manipulations, we find that for the �-class piezo-
electric bimaterials, the associated eigenvectors satisfy

H̄w1 = e2��Hw1, H̄w2 = e−2��Hw2, H̄w3 = Hw3, H̄w4 = Hw4

�36�

from which it can be verified that w� satisfy the following inher-
ent relations


w1

T

w2
T

w3
T

w4
T
�H�w1,w2,w3,w4�

= 
0 w1

THw2 0 0

w2
THw1 0 0 0

0 0 w3
THw3 0

0 0 0 w4
THw4

� �37�

However, for the �-class piezoelectric bimaterials, the associ-
ated eigenvectors satisfy

H̄w1 = Hw1, H̄w2 = Hw2, H̄w3 = e2�i�Hw3, H̄w4 = e−2�i�Hw4

�38�
from which it can be proved that there are the following inherent
relations between the eigenvectors w�


w1

T

w2
T

w3
T

w4
T
�H�w1,w2,w3,w4�

= 
w1

THw2 0 0 0

0 w2
THw1 0 0

0 0 0 w3
THw4

0 0 w4
THw3 0

� �39�

Obviously, the above inherent relations obtained here are dif-
ferent from those obtained by Tong �2� and Suo et al. �6�.

Now, we study the present problems in more detail to obtain the
full-field solution. In order to solve the nonhomogeneous Hilbert
Eq. �13�, it is convenient to display physical quantities in an ei-

Table 1 Material constants of typical piezoelectric ceramics

Material constants PZT-4 PZT-5H PZT-6B PZT-7A P-7 BaTiO3 PZT-PIC 151

c11 �1010 N·m−2� 13.9 12.6 16.8 14.8 13.0 15.0 11.0
c12 �1010 N·m−2� 7.78 5.50 6.00 7.62 8.30 6.60 6.3
c13 �1010 N·m−2� 7.43 5.30 6.00 7.42 8.30 6.60 6.4
c33 �1010 N·m−2� 11.3 11.7 16.3 13.1 11.9 14.6 10.0
c44 �1010 N·m−2� 2.56 3.53 2.71 2.54 2.50 4.4 2.0

e13 �C·m−2� −6.98 −6.50 −0.90 −2.10 −10.3 −4.35 −9.6
e33 �C·m−2� 13.8 23.3 7.10 9.50 14.7 17.5 15.1
e15 �C·m−2� 13.4 17.0 4.60 9.70 13.5 11.4 12.0

�11 �10−10 C· �V·m�−1� 60.0 151 36.0 81.1 171 98.7 98.2
�33 �10−10 C· �V·m�−1� 54.7 130 34.0 73.5 186 112 75.4
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genvector representation. The potential functions g�z� and con-
stant vector T can be expressed by the eigenvectors w as

g�z� = h1�z�w1 + h2�z�w2 + h3�z�w3 + h4�z�w4 �40�

T = K0 + T0 = t1w1 + t2w2 + t3w3 + t4w4 �41�

Substituting Eqs. �40� and �41� into Eq. �13�, we obtain the fol-
lowing decoupled Hilbert equations

h�
+�x1� + e2���h�

−�x1� = t� �� = 1,2,3,4� �42�

The solving procedure of Eq. �42� follows those developed by
England �33� and Suo et al. �6�, which yields

h��z� =
t�

1 + e2���
�1 − � z − a

z + a

−i�� z − 2i��a

	z2 − a2 �
+ � z − a

z + a

−i�� c0

� + c1
�z + ¯ + cn

�zn

	z2 − a2
�43�

By considering Eqs. �41� and �43�, Eq. �40� gives

g�z� = w�� 1

1 + e2���
�1 − � z − a

z + a

−i�� z − 2i��a

	z2 − a2 ���w−1�K0 + T0�

+ w��� z − a

z + a

−i����c0 + c1z + ¯ + cnzn

	z2 − a2
�44�

where ��·�� indicates the diagonal matrix in which each component
is varied according the Greek index �; cn= �cn

1 ,cn
2 ,cn

3 ,cn
4�T;

whereas the normal component of electric displacement along the
interface crack D2

0 and the constant vectors cn in Eq. �44� are
unknown. To find cn it is convenient to use the asymptotic features
of Eq. �44� by taking the limit as z→� and using the far-field
uniform finite loading condition, we obtain

c1 = �� 1

1 + e2���
��w−1�T� + K0�; cn = 0 �n	1� �45�

In deriving Eq. �45�, the following relation has been used

w−1�I + H̄−1H�w = ��1 + e2����� �46�

It should be noted that the determination of the remaining un-
known constants c0 in Eq. �44� needs the use of the single-valued
condition of the generalized displacement

�
Lc

�u�z�dz = 0 �47�

Substituting Eqs. �11� and �44� into Eq. �47�, we obtain

c0 = �� − 2i��a

1 + e2���
��w−1�T� + K0� �48�

Thus, the full mechanical–electric field for the semi-permeable
crack between two dissimilar piezoelectric materials can be ex-
pressed as follows

��z� = T0 + w���� z − a

z + a

−i�� z − 2i��a

	z2 − a2 ���w−1�T� − T0� �49�

The jump of the generalized displacement �u1, u2, u3, and ��
across the interface crack surfaces �−a�x1�a� is then given by

�u�x1� = Hw��exp�− �����a − x1�1/2−i���a + x1�1/2+i����w−1�T�

− T0� �50�
It should be noted that, in general, for all most practical engi-

neering piezoelectric bimaterials, the absolute values of �� are
much smaller than 1/2, varying in the range between 10−3 and
10−2 �see Appendix B�. Thus, the values of �� comparing 1/2 are

negligible and the jump of the mechanical displacement and the
drop of the electric potential across the crack surfaces can be
approximatively determined from Eq. �50�

u2
+ − u2

− � H2w��exp�− ������w−1�T� − T0�	a2 − �x1�2 �51�

�+ − �− � H4w��exp�− ������w−1�T� − T0�	a2 − �x1�2 �52�

where H2 and H4 are the second and forth rows of H, respec-
tively.

By substituting Eqs. �51� and �52� into the semi-permeable
electric boundary condition Eq. �1a�, the normal component of
electric displacement inside the crack D2

0 can be derived by

D2
0 = − �v

�+ − �−

u2
+ − u2

− = − �v
H2w��exp�− ������w−1�T� − T0�
H4w��exp�− ������w−1�T� − T0�

�53�
The singular stress fields along the bonded interface near the

semi-permeable interface crack tip can be derived as the polar
coordinate system �r ,
�→0

��r� =
1

	2�r
Y�r−i����T� − T0� �54�

where

Y�r−i���w��	�a� r

2a

−i��

�1 − 2i�����w−1 �55�

Since there is no coexistence of the singular parameters � and �
in the semi-permeable interface crack tip for all dissimilar piezo-
electric combinations �see Appendix B�, it can be concluded from
Eq. �54� that the singularity of near-tip fields for a certain combi-
nation of dissimilar piezoelectric materials can either be oscilla-
tory or nonoscillatory when the poling axes of both piezoelectric
materials are perpendicular to the interface crack. That is, the
crack tip singularity may either be governed by −1/2± i� or by
−1/2±�, depending on the combination of the two dissimilar pi-
ezoelectric materials. Thus the vector of real-valued stress and
electric displacement intensity factors, which uniquely character-
ize the singular fields at the semi-permeable interface crack tip
between two dissimilar piezoelectric materials with complex ma-
terial matrix H, can be defined as �8�

K = lim
r→0

	2arY�ri�����r� �56�

where K= �KII ,KI ,KIII,KD�T, The intensity factor K may be con-
sidered as an extension of the elastic version proposed by Wu �35�
and Qu and Li �36�.

By substituting the above near-tip stress fields and the jump of
generalized displacement into the crack closure integral Eq. �23�,
the crack tip ERR for the semi-permeable interface crack can be
obtained as

G =
a

2
�T� − T0�THw������w−1�T� − T0� �57�

where

�� =
�− 1

2 + i����

sin��− 1
2 + i�����

e−����1 + 2i���

In deriving this, we have used the inherent relations described in
Eq. �37� and �39� and the identity Eq. �25� with q= �−1/2+ i���.

3 The Influence of the Permittivity on the Crack Tip
ERR

In order to portray the influence of the permittivity of the me-
dium inside the interface crack gap on the crack tip ERR, numeri-
cal results for an interface crack of length 2a �a=100 �m� in a
typical � class bimaterial PZT-4/BaTiO3 and those in a typical
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�-class bimaterial PZT-5H/BaTiO3 are presented, respectively,
with PZT-4 or PZT-5H located on the upper half-space and
BaTiO3 located on the lower half-space. Here, the poling direction
of each material is always parallel to the x2 axis, as shown sche-
matically in Fig. 1. The material properties of PZT-4, PZT-5H,
and BaTiO3 can be seen in Table 1. Four different crack cases are
considered: �i� the crack gap is filled with air or vacuum; �ii� the
crack gap is filled with silicon oil to avoid discharge �29,30�; �iii�
the crack gap is assumed to be fully permeable or filled with NaCI
solution �31�; and �iv� the electrically impermeable crack �10�. For
case �i�, the permittivity �v is equal to that of air or vacuum �0
=8.8510−12 C2/N m2, whereas �v should be 2.5�0 when silicon
oil is filled in the crack gap. It is well known that, physically, an
impermeable crack model can be reached when the permittivity �v
approaches zero �17�. We use �v=10−5�0 to approximately de-
scribe this charge-free condition, whereas a permeable crack
model can be reached when the permittivity �a approaches infinity
�17�. We use �a=108�0 to approximately describe the permeable
crack condition.

Firstly, numerical results of the electric displacement solution
D2

0 along the interface crack obtained from Eq. �53� for case �i�
with air or vacuum inside the crack gap are discussed. It is noted
that Eq. �53� is a quadratic of D2

0 and thus two distinct roots may
exist. Numerical studies show that the discriminant of Eq. �53� is
positive for all cases considered. Hence, it yields two real roots
for D2

0, in which only one real root is physically admissible for a
given bimaterial subjected to given loadings. In order to judge
which root should be accepted as the admissible root, the crack tip
ERR formulated by Eq. �57� is calculated under purely mechani-
cal loading �22

� =1 MPa, 3 MPa, 5 MPa, 7 MPa, 9 MPa, respec-
tively, and presented in Table 2. It is found that the crack tip ERR,
respectively, induced from two roots under the far-field tension
loading yield different results: the negative G corresponding to
root 1 and the positive G corresponding to root 2. Obviously, only
root 2 will be admissible since it can yield the positive crack tip
ERR. Similar discussions hold true for the other three crack cases.
In particular, it can be shown from Eq. �53� that if the medium
inside the crack is ideally insulated, i.e., �v→0, then D2

0=0, then
the commonly used impermeable assumption is reached, whereas
if the medium is ideally conducting, i.e., �v→�, then we can
obtain �+=�−, which is the permeable crack solution. Hence, the
traditional impermeable and permeable crack boundary conditions
are actually the two limits of the semi-permeable boundary con-
dition.

Calculated numerical results of the crack tip ERR for an inter-
face crack of length 2a �a=100 �m� in a typical �-class bimate-
rial PZT-4/BaTiO3 and in a typical �-class bimaterial
PZT-5H/BaTiO3 are plotted in Figs. 2�a�–2�d� and Figs.
3�a�–3�d�, respectively. The electric field loading varies from
−0.5 MV/m to 0.5 MV/m and four different values of mechani-
cal loading: 0 MPa, 2 MPa, 5 MPa, and 10 MPa are considered.
For each magnitude of the mechanical load, all of four crack cases
are considered. It can be seen from Fig. 2�a�, that when the me-
chanical loading vanishes, the crack tip ERR of the semi-
permeable crack approaches the values induced from the perme-
able crack. It is approximately equal to zero with the electric field

varying from −0.5 MV/m to 0.5 MV/m. This indicates that the
electric field has a negligible effect on the crack tip ERR in the
absence of mechanical loading. A reasonable physical interpreta-
tion is that when the mechanical loading is zero, there is no crack
opening and then the continuity of the electric potential on the
upper and lower crack faces will be satisfied automatically. In this
way, the semi-permeable crack model will degenerate into the
permeable crack. It is consistent with the assertion, as pointed out
by McMeeking �22� for homogeneous piezoelectric materials, that
the crack is “invisible” to an applied electric field and there is no
crack tip ERR in the presence of an applied electric field without
a mechanical loading, whereas it can be found from Figs. 2�a� and
2�b� that for an impermeable crack, the ERR curve is always
negative and far apart from those of other three curves. Indeed, in
the present study for an interface crack, the impermeable crack
model is physically unrealistic. All previous solutions for an in-
terface crack under such an assumption might be incorrect or mis-
leading �22,23�, whereas under a purely electric field, the perme-
able crack model will yield reasonable results since Fig. 2�a�
shows a clear feature that the numerical results calculated from
the semi-permeable crack �whether the medium inside the crack
gap is air or silicon oil� coincide well with those from the perme-
able crack model. However, this feature is no longer valid in com-
bined mechanical electric loadings. Figure 2�b� with 2 MPa me-
chanical loading shows that when the �-class bimaterial
PZT-4/BaTiO3 is under combined mechanical–electric loading,
discrepancies between the curves calculated from the semi-
permeable crack and those calculated from the permeable crack
model are remarkable, especially when the applied electric field
becomes larger. For example, when the applied electric field in
PZT-4/BaTiO3 under 2 MPa is −0.5 MV/m and 0.5 MV/m, re-
spectively, the crack tip ERR for air or vacuum is about
0.0109 N m and 0.0099 N m, respectively, far apart from
0.0123 N m for the permeable crack �over 10%�; Figure 2�c� with
5 MPa mechanical loading shows that the corresponding values
for air or vacuum are 0.0688 N m and 0.0652 N m, respectively,
far apart from 0.0766 N m for the permeable crack �over 10%�;
Figure 2�d� with 10 MPa mechanical loading shows that the cor-
responding values of the ERR are 0.2790 N m and 0.2751 N m,
respectively, far apart from 0.3063 N m for a permeable crack
�over 10%�. Moreover, it is seen that the positive electric field
yields larger discrepancies than those induced from the negative
electric field. This is due to the nonlinear feature of the semi-
permeable crack model as pointed out by McMeeking �22–24�
and reviewed by Chen and Hasebe �27� in homogenous piezoelec-
trics. It is interesting to see that when the crack gap is filled with
silicon oil, the discrepancies become much smaller that those for
air or vacuum. These discrepancies are always within the range of
3% when the electric field varies from −0.5 MV/m to 0.5 MV/m.
For example, when the mechanical loading is 10 MPa and the
electric field is −0.5 MV/m and 0.5 MV/m, respectively, Fig.
2�d� shows that the ERR for the semi-permeable with silicon oil is
0.3002 N m and 0.2999 N m, respectively, very close to
0.3063 N m for the permeable crack. It is concluded that, by com-
paring it to the semi-permeable crack filled with silicon oil, the
impermeable crack model greatly overestimates the effect of the
applied electric field whether a mechanical loading is imposed or
not, whereas the permeable crack model underestimates the effect
but in a tolerant way even though a larger mechanical loading is
imposed.

Similar conclusions can be seen in the typical �-class bimaterial
PZT-5H/BaTiO3 as shown in Figs. 3�a�–3�d�, although the crack
tip singularity in PZT-5H/BaTiO3 is quite different from that in
PZT-4/BaTiO3. Indeed, the previous results for an interface crack
in dissimilar piezoelectric materials should be suspected if they
were obtained from the impermeable crack model, whereas those
obtained from the permeable crack model may be accepted in a
tolerant way if the medium inside the crack gap is silicon oil
rather than air or vacuum.

Table 2 The crack tip ERR corresponding to two different
roots under purely mechanical loading for case i

�22
� �MPa� D2

0 �root 1� G /a �root 1� D2
0 �root 2� G /a �root 2�

1.0 4.25810−2 −2.347105 −2.07810−4 3.062101

3.0 4.47810−2 −2.642105 −5.92910−4 2.753102

5.0 4.69410−2 −2.948105 −9.42510−4 7.637102

7.0 4.90810−2 −3.265105 −1.26210−3 1.494103

9.0 5.11910−2 −3.592105 −1.55610−3 2.463103
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4 Conclusions
The semi-permeable crack model accounting for the permittiv-

ity of the medium inside the crack gap is used for solving the
interface crack problem between dissimilar piezoelectric materi-
als. This model shows more physically reasonable features than
either the impermeable interface crack model or the permeable
interface crack model. Numerical results of the singular param-
eters � and � for the 21 kinds of dissimilar piezoelectric materials
show that the singularity for a certain combination of dissimilar
piezoelectric materials can either be oscillatory or nonoscillatory
when the poling axes of both piezoelectric materials are perpen-
dicular to the interface crack. That is, the crack tip singularity may
either be governed by −1/2± i� or by −1/2±�, depending on the
combination of the two dissimilar piezoelectric materials, al-
though the permittivity has no influence on the numerical values
of � or � obtained previously by Ou and Wu �34� under the im-
permeable crack model. Among the 21 kinds of dissimilar piezo-
electric materials, the following 14 kinds: PZT-4/PZT-5H, PZT-4/
PZT-6B, PZT-4/PZT-7A, PZT-4/P-7, PZT-4/BaTiO3, PZT-5H/
PZT-7, PZT-5H/PZT-PIC 151, PZT-6B/BaTiO3, PZT-7A/P-7,
PZT-7A/BaTiO3, PZT-7A/PZT-PIC 151, P-7 /BaTiO3, P-7/PZT-
PIC 151, and BaTiO3/PZT-PIC 151 belong to the nonoscillatory
singularity, i.e., the �-class bimaterial, whereas the following
seven kinds: PZT-4/PZT-PIC 151, PZT-5H/PZT-6B,

PZT-5H/BaTiO3, PZT-6B/PZT-7A, PZT-6B/P-7, and PZT-6B/
PZT-PIC 151 belong to the oscillatory singularity, i.e., the �-class
bimaterial.

There are two new relations Eqs. �37� and �39� among the ei-
genvector matrices, which are not covered by those given previ-
ously by Ting �2� and Suo et al. �6�. These relations provide a
useful check to examine numerical results. That is, when some
people study interface crack problems in dissimilar piezoelectric
materials, all of their numerical results for each kind of dissimilar
piezoelectric material should satisfy either these two relations or
the orthogonal relations of Ting �2�, otherwise they might obtain
some incorrect results.

Detailed comparisons and discussions for the crack tip ERR in
a typical �-class bimaterial PZT-4/BaTiO3 and in a typical
�-class bimaterial PZT-5H/BaTiO3 are performed, respectively. It
is concluded that the discrepancies between the semi-permeable
crack and the impermeable crack are remarkable, which shows the
unphysical features of the charge-free conditions, whether the me-
chanical loading is preferred or not �23,24�, whereas much smaller
discrepancies for the ERR can be seen between the semi-
permeable crack with silicon oil and the fully permeable crack
even under larger mechanical and electric loadings �e.g., 10 MPa
and 0.5 MVm�, which are within a tolerant range of 3% in the
present study. However, this conclusion may not be correct if the

Fig. 2 The crack tip energy release rate for an interface crack in PZT–4/BaTiO3 bimaterial subjected to the remote tensile
stress and electric field. Plots „a…, „b…, „c…, and „d… are given for four different levels of applied tensile stress: 0 MPa, 2 MPa,
5 MPa, and 10 MPa, respectively. Here, curves with the symbol � refer to the impermeable crack, curves with the symbol �
refer to the semi-permeable crack filled with air or vacuum, curves with the symbol � refer to the semi-permeable crack filled
with silicon oil, and curves with the symbol � refer to the permeable crack.
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semi-permeable crack is filled with air or vacuum since the per-
mittivity of air or vacuum is 2.5 times smaller than silicon oil and
then the discrepancies will be sometimes over 10% as shown in
Figs. 2�b�–2�d� and 3�b�–3�d�.

It is concluded that the previous investigations for interface
cracks in dissimilar piezoelectric materials under an impermeable
crack model might be incorrect or misleading since the model
greatly overestimates the effect of the electric field on the ERR,
that is, it yields significant discrepancies of the ERR from those
obtained from the semi-permeable crack model, whether the me-
chanical loading is preferred or not, whereas the previous inves-
tigations under a permeable crack model may be accepted in a
tolerant way since the model yields very small discrepancies from
those obtained from the semi-permeable crack model even though
the mechanical–electric loading is large. It is emphasized that air/
vacuum and silicon oil play quite different roles in a semi-
permeable crack. The former always yields smaller values of the
ERR and larger discrepancies than those induced from the latter.

It should be emphasized that the fracture criterion for an inter-
face crack in dissimilar piezoelectric materials is still unclear at
present and remains to be further investigated. This is either be-
cause of the lack of experimental observations or because of the
confusion of fracture criteria in homogenous piezoelectric materi-
als �see, Zhang et al. �37�; Chen and Lu �38�; Zhang and Gao �39�;
and Chen and Hasebe �27��. To the present authors’ knowledge,
there is no experimental work for an interface crack in dissimilar

piezoelectric materials in the literature. It is suggested that the
four-point bending specimen may be helpful in experiments as
Heyer et al. �31� did in homogeneous piezoelectric fracture but the
upper material should be with a center-cut gap. It has been proven
that Eq. �1� is not only valid in linear analyses in homogeneous
piezoelectric crack problems but also in nonlinear analyses with
near-tip domain switching �40�. The analysis presented in this
paper is a linear piezoelectric analysis, in which the near-tip non-
linearity has been entirely neglected. Obviously, the fracture cri-
terion in dissimilar piezoelectric materials should be concerned
with some material microstructure such as the near-tip domain
switching or microcracks and the mesoscopic failure mechanism.
Subsequent investigations into these topics are absolutely needed.
Only after doing so, could a more precise fracture criterion be
obtained.
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Appendix A: Fundamental Equations of Piezoelectricity
The complete set of basic equations for a linear piezoelectric

solid in the absence of body forces and free charges can be written
as �6�

Fig. 3 The crack tip energy release rate for an interface crack in PZT-5H/BaTiO3 bimaterial subjected to the remote tensile
stress and electric field. Plots „a…, „b…, „c…, and „d… are given for four different levels of applied tensile stress 0 MPa, 2 MPa,
5 MPa, and 10 MPa, respectively. Here, curves with the symbol � refer to the impermeable crack, curves with the symbol �
refer to the semi-permeable crack filled with air or vacuum, curves with the symbol � refer to the semi-permeable crack filled
with silicon oil, and curves with the symbol � refer to the permeable crack.
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constitutive equations

�ij = Cijkluk,l + ekij�,k

Di = eikluk,l − �ik�,k �A1a�
equilibrium equations

�ij,j = 0

Di,i = 0 �A1b�
boundary conditions

�ijnj = Ti

Dini = − qs �A1c�

where �ij, ui, Di, and � are separately the stress components,
mechanical displacement components, electric displacement com-
ponents, and electric potential; and Cijkl, ekij, and �ik are the elas-
tic, piezoelectric, and dielectric constants of the material, respec-
tively.

By using Stroh’s theory �1�, the general solutions for piezoelec-
trics under generalized plane strain can be expressed as �6�

u = �u1,u2,u3,��T = 2 Re�Af�z�� �A2�

� � ��i2� = ��21,�22,�23,D2�T = 2 Re�Bf��z�� �A3�

where f�z� is a column of four complex potential functions

f�z� = �f1�z1�, f2�z2�, f3�z3�, f4�z4��Tz� = x1 + p�x2, �� = 1,2,3,4�
�A4�

in which the superscript T denotes transpose of a vector; Re de-
notes the real part of a complex number; the over prime � �� de-
notes the differentiation with respect to the corresponding argu-
ment; and p� are the eigenvalues with positive imaginary parts of
the following material’s characteristic equation obtained by sub-
stituting Eq. �A2� into Eqs. �A1a� and �A1b�

�Ci1k1 + p�Ci1k2 + Ci2k1� + p2Ci2k2�ak + �e1i1 + p�e1i2 + e2i1�

+ p2e2i2�a4 = 0

�e1k1 + p�e1k2 + e2k1� + p2e2k2�ak − ��11 + p��12 + �21� + p2�22�a4

= 0 �A5�
Equations �A5� can be written in the following compact form

�Q + p�R + RT� + p2T�a = 0 �A6�

where Q, R, and T are 44 material matrices defined as follows

Q = �Ci1k1 e1i1

e1k1 − �11
�, R = �Ci1k2 e2i1

e1k2 − �12
�, T = �Ci2k2 e2i2

e2k2 − �22
�

�A7�

An auxiliary vector b� is introduced by Suo et al. �6�, which is
defined as

b� = �RT + p�T�a� = − �1/p���Q + p�R�a� �A8�

Thus, we can obtain two 44 nonsingular material characteristic
matrices A and B as follows

A = �a1,a2,a3,a4�, B = �b1,b2,b3,b4� �A9�
For a bimaterial, we introduce the following material matrices,

which will be used subsequently in this paper, defined as

H = Y1 + Ȳ2, Y1 = iA1B1
−1, Y2 = iA2B2

−1 �A10�

D = Re�H�, W = Im�H� �A11�

where the subscript 1 and 2 separately indicate that the quantities
are defined in materials 1 and 2, respectively; the overbar �-�
indicates complex conjugation; and Im denotes the imaginary part

of a complex number. It can be proved that H is a Hermitian
matrix and satisfies

HT = H̄ �A12�
When the piezoelectric bimaterial continuum has certain sym-

metry or degenerates to be homogeneous, the matrix H can be
real. However, in general, except for the above special case, H is
complex for almost all the piezoelectric bimaterials. It should be
emphasized that in Sec. 2, two different cases for piezoelectric
bimaterial with real and complex H have been discussed, respec-
tively.

Appendix B: Singularity Parameters � and � and
Eigenvectors w� „�=1,2 ,3 ,4… for a Semi-Permeable In-
terface Crack in Each of Kinds of Piezoelectric Bimate-
rials

�1� PZT-4/PZT-5H

�1 = 0.0442, �2 = − 0.0442, �1 = �2 = 0

w = 
0.8535 0.8535 0 0

− 0.3459 0.3459 0.9995 0

0 0 0 1

0.3896 − 0.3896 0.0312 0
� �B1�

�2� PZT-4/PZT-6B

�1 = 0.0168, �2 = − 0.0168, �1 = �2 = 0

w = 
0.7066 0.7066 0 0

0.5993 − 0.5993 0.9455 0

0 0 0 1

0.3763 − 0.3763 0.3256 0
� �B2�

�3� PZT-4/PZT-7A

�1 = 0.0247, �2 = − 0.0247, �1 = �2 = 0

w = 
0.8940 0.8940 0 0

0.1296 − 0.1296 0.9646 0

0 0 0 1

0.4288 − 0.4288 0.2636 0
� �B3�

�4� PZT-4/P-7

�1 = 0.0367, �2 = − 0.0367, �1 = �2 = 0

w = 
0.8748 0.8748 0 0

− 0.1721 0.1721 0.9906 0

0 0 0 1

0.4528 − 0.4528 0.1364 0
� �B4�

�5� PZT-4/BaTiO3

�1 = 0.0508, �2 = − 0.0508, �1 = �2 = 0

w = 
0.9138 0.9138 0 0

− 0.0531 0.0531 0.9837 0

0 0 0 1

0.4027 − 0.4027 0.1798 0
� �B5�

�6� PZT-5H/PZT-7

�1 = 0.0035, �2 = − 0.0035, �1 = �2 = 0
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w = 
− 0.3031 0.3031 0 0

0.8604 0.8604 0.9280 0

0 0 0 1

− 0.4096 − 0.4096 − 0.3725 0
� �B6�

�7� PZT-5H/PZT-PIC 151

�1 = 0.0447, �2 = − 0.0447, �1 = �2 = 0

w = 
0.8601 0.8601 0 0

0.1680 − 0.1680 0.9873 0

0 0 0 1

− 0.4817 0.4817 0.1586 0
� �B7�

�8� PZT-6B/BaTiO3

�1 = 0.0095, �2 = − 0.0095, �1 = �2 = 0

w = 
0.7279 0.7279 0 0

0.6385 − 0.6385 0.9928 0

0 0 0 1

− 0.2500 0.2500 − 0.1196 0
� �B8�

�9� PZT-7A/P-7

�1 = 0.0023, �2 = − 0.0023, �1 = �2 = 0

w = 
− 0.3020 0.3020 0 0

0.8810 0.8810 0.9426 0

0 0 0 1

− 0.3632 − 0.3632 − 0.3340 0
� �B9�

�10� PZT-7A/BaTiO3

�1 = 0.0206, �2 = − 0.0206, �1 = �2 = 0

w = 
0.9058 0.9058 0 0

0.1726 − 0.1726 0.9978 0

0 0 0 1

− 0.3869 0.3869 0.0665 0
� �B10�

�11� PZT-7A/PZT-PIC 151

�1 = 0.0175, �2 = − 0.0175, �1 = �2 = 0

w = 
0.7006 0.7006 0 0

− 0.4683 0.4683 0.8812 0

0 0 0 1

− 0.5383 0.5383 0.4727 0
� �B11�

�12� P-7/BaTiO3

�1 = 0.0162, �2 = − 0.0162, �1 = �2 = 0

w = 
0.8504 0.8504 0 0

− 0.1070 0.1070 0.9587 0

0 0 0 1

− 0.5152 0.5152 0.2844 0
� �B12�

�13� P-7/PZT-PIC 151

�1 = 0.0351, �2 = − 0.0351, �1 = �2 = 0

w = 
0.8354 0.8354 0 0

− 0.0033 0.0033 0.9530 0

0 0 0 1

− 0.5496 0.5496 0.3029 0
� �B13�

�14� BaTiO3/PZT-PIC 151

�1 = 0.0472, �2 = − 0.0472, �1 = �2 = 0

w = 
0.8685 0.8685 0 0

− 0.1058 0.1058 0.9548 0

0 0 0 1

− 0.4843 0.4843 0.2972 0
� �B14�

�15� PZT-4/PZT-PIC 151

�1 = 0.0095, �2 = − 0.0095, �1 = �2 = 0

w = 
0.7224 0.7224 0 0

0.6908i − 0.6908i − 0.6459 0

0 0 0 1

0.0307i − 0.0307i 0.7635 0
� �B15�

�16� PZT-5H/PZT-6B

�1 = 0.0219, �2 = − 0.0219, �1 = �2 = 0

w = 
0.6832i − 0.6832i 0 0

0.7300 0.7300 0.7743 0

0 0 0 1

− 0.0203 − 0.0203 − 0.6328 0
� �B16�

�17� PZT-5H/PZT-7A

�1 = 0.0069, �2 = − 0.0069, �1 = �2 = 0

w = 
0.3569i − 0.3569i 0 0

0.8956 0.8956 0.9350 0

0 0 0 1

− 0.2654 − 0.2654 − 0.3548 0
� �B17�

�18� PZT-5H/BaTiO3

�1 = 0.0130, �2 = − 0.0130, �1 = �2 = 0

w = 
− 0.6480i 0.6480i 0 0

0.6944 0.6944 0.5683 0

0 0 0 1

0.3128 0.3128 0.8228 0
� �B18�

�19� PZT-6B/PZT-7A

�1 = 0.0055, �2 = − 0.0055, �1 = �2 = 0

w = 
− 0.6561i 0.6561i 0 0

0.7316 0.7316 0.7861 0

0 0 0 1

0.1853 0.1853 0.6181 0
� �B19�

�20� PZT-6B/P-7

�1 = 0.0121, �2 = − 0.0121, �1 = �2 = 0

w = 
0.7116 0.7116 0 0

0.7021i − 0.7021i − 0.4550 0

0 0 0 1

0.0236i − 0.0236i 0.8905 0
� �B20�

�21� PZT-6B/PZT-PIC 151

�1 = 0.0134, �2 = − 0.0134, �1 = �2 = 0
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w = 
− 0.4841i 0.4841i 0 0

0.8048 0.8048 0.8664 0

0 0 0 1

0.3435 0.3435 0.4994 0
� �B21�
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Energy Analysis and Decoupling
in Three-Dimensional Impacts of
Multibody Systems
This paper discusses an exact decomposition of the kinetic energy to determine the energy
content that influences the dynamics of unilateral contacts in multibody systems. This
decomposition essentially divides the kinetic energy of the whole multibody system into
two completely decoupled parts associated with the constrained and admissible direc-
tions of unilateral contacts. This will provide a picture of how the energy absorption/
dissipation during impacts is related to the variation of the generalized velocities and the
configuration of multibody systems. Potential applications of such a decoupling are
highlighted. �DOI: 10.1115/1.2712226�

1 Introduction

Impact is a complex multiscale phenomenon that takes place
when at least two separate solid bodies enter in collision. The
forces arising during impact are normally large enough to cause
not only elastic, but also plastic deformation in the local contact
area. This is known to be one of the primary causes of energy loss
during impact �1�. The presence of fast-scale physical effects,
such as wave propagation, is another important source of energy
dissipation. During impact, part of the kinetic energy absorbed in
the compression phase is recovered during the restitution phase
and the rest remains in the colliding bodies in various forms �e.g.,
plastic deformations, impact-induced vibrations�. This results in
energy dissipation, which can be related to the dynamics in the
normal or tangential directions of contact. On the other hand,
friction also acts as another energy dissipating mechanism; it is
associated with the tangential dynamics of the contacting bodies.

In the literature, the problem of impact between two single
bodies has been widely discussed. However, the interaction of
multibody systems and the related energy considerations have
been given less attention. If two single bodies are involved, then
energy dissipation due to the normal contact forces results in a
direct decrease of the normal relative velocity of the colliding
bodies. The energy loss due to friction influences the tangential
relative velocity. However, for collisions of multibody systems,
the variation of the normal or tangential relative velocities of the
contacting bodies does not stand as a direct measure of absorption
or restitution of kinetic energy for the whole system. In fact, it is
useful to know how energy dissipation/absorption during impact
is related to changes in the generalized velocities and the configu-
ration of the system.

In this paper, we discuss an effective and physically meaningful
decomposition of the kinetic energy for unilaterally constrained
multibody systems. This decomposition is useful in the energy
analysis of general three-dimensional contact scenarios in multi-
body systems. The decoupling of the kinetic energy is achieved
through a decomposition of the generalized velocity vector, based
on the normal and tangential directions of unilateral contacts. This
will also make it possible to determine what parts of the total
pre-impact kinetic energy contribute to the dynamics and energy
dissipation along the normal and tangential directions. These di-
rections can also be represented in an abstract sense in the tangent
space of the configuration manifold of the multibody system.

2 Decoupling of the Generalized Velocity Vector and
the Kinetic Energy

Let us consider that n generalized coordinates describe the con-
figuration of the system. These are represented in an
n-dimensional vector q. In this paper, we study holonomic, scle-
ronomic systems subject to a set of unilateral constraints. There-
fore, the kinetic energy of the system can be expressed as a qua-
dratic function of the generalized velocities. We address the case
of simultaneous multiple-point contact scenarios with m contact
points. For the instant of impact, the constraints can be written at
the velocity level as �2,3�

A�q�q̇ � 0 �1�

where A is the m�n constraint Jacobian matrix and q̇ is the n
�1 vector of generalized velocities. The number of the con-
straints in Eq. �1� gives the number of contact points. Each con-
straint parameterizes the normal direction for one contact point, in
terms of the generalized coordinates and velocities of the multi-
body system at hand. For a single-point contact, there is only one
constraint, thus A reduces to an n�1 row vector. Figure 1 shows
a typical multibody impact situation with a single point contact
with one normal and one tangential direction.

Let us consider now the tangent space of the configuration
manifold of the multibody system for the pre-impact instant. This
tangent space is an n-dimensional Euclidean vector space �4�. The
constraints in Eq. �1� give m vectors �directions� in this vector
space. Those m vectors represent the relative normal velocity for
each of the m contact pairs in the tangent space, and define a
subspace we shall call the space of constrained motion. The di-
mension of this subspace is equal to the number of independent
constraints in Eq. �1� �it is m if all the constraints are linearly
independent�. The orthogonal complement of the space of con-
strained motion is another subspace of the tangent space. It shall
be termed the space of admissible motion. The union of these two
subspaces gives back the tangent space of the configuration mani-
fold. The space of admissible motion includes vectors with direc-
tions along which the motion is not constrained. These directions
can be seen as the mapping of the tangential directions of the
contact pairs into the tangent space of the configuration manifold.

One of the essential points of our analysis is the decomposition
of the generalized velocity vector of the multibody system �q̇� into
two components, while keeping the original parametrization of the
system �q , q̇�. One of these components belongs to the space of
constrained motion, and the other is an element of the space of
admissible motion. It is important to perform this decomposition
in a physically meaningful way, by accounting for the metric ten-
sor of the tangent space and the potential inhomogeneity in physi-

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received November 7, 2005; final manu-
script received December 20, 2006. Review conducted by Marc P. Mignolet.

Journal of Applied Mechanics SEPTEMBER 2007, Vol. 74 / 845Copyright © 2007 by ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



cal units. The detailed mathematical procedure and description of
such a decomposition was introduced in �5�.

Based on these considerations, the following projection opera-
tors can be established to decompose a vector �5�

Hc = U−1�AU−1�†A �2�

Ha = I − U−1�AU−1�†A �3�

where U is obtained from the Cholesky decomposition of the
generalized mass matrix of the system as M=UTU, and I is n
�n identity matrix. Exponent “†” denotes the right Moore-
Penrose generalized inverse, which can be obtained from the sin-
gular value decomposition for example �6�.1 Operators Hc and Ha
are associated with the spaces of constrained and admissible mo-
tions, respectively. These expressions were derived for the general
case where the constraints do not have to be linearly independent,
i.e., the constraint Jacobian need not have full row rank �5�. Be-
low, we simplify the foregoing expressions as we primarily ad-
dress the case of independent constraints in this work. Using the
above operators, the vector of generalized velocities of the system
can be decoupled as

q̇ = q̇c + q̇a = Hcq̇ + Haq̇ �4�

where vector q̇a=Haq̇ represents the component in the space of
admissible motion, and q̇c=Hcq̇ is the component in the space of
constrained motion. It is important to note that we are not using
local parameterizations for the subspaces; we keep the original
global parameterizations of the tangent space. Note that q̇c and q̇a
in the above equations only represent the decomposed parts of q̇
associated with the spaces of constrained and admissible motions,
respectively, and need not be, in fact, total time-derivatives. Vec-
tor q̇a is completely admissible with the constraints in Eq. �1�, i.e.,
it is unconstrained. On the other hand, q̇c is associated with the
constrained directions of the unilateral constraints. Using Eq. �4�,
the total kinetic energy of the system can be written as

T =
1

2
q̇TMq̇ =

1

2
�Hcq̇�TM�Hcq̇� +

1

2
�Hcq̇�TM�Haq̇�

+
1

2
�Haq̇�TM�Hcq̇� +

1

2
�Haq̇�TM�Haq̇� �5�

Next, we will show that the said operators completely decouple
the whole kinetic energy into parts associated with the constrained
and admissible motions of the system. To demonstrate this, we
need to prove that the projection operators are orthogonal with
respect to the total mass matrix of the system, i.e., Hc

TMHa=O
and Ha

TMHc=O, with O denoting the n�n zero matrix. Given the
way the right generalized inverse can be expressed for a full row
rank matrix, the formulation of the above projection operators can
be rewritten for the case of independent constraints in the forms

Hc = U−1�AU−1�†A = U−1U−TAT�AU−1U−TAT�−1A

= M−1AT�AM−1AT�−1A �6�

Ha = 1 − U−1�AU−1�†A = I − M−1AT�AM−1AT�−1A �7�

Hence, and noting that Ha=I−Hc, we obtain

Hc
TMHa = Hc

TM�I − Hc� = Hc
TM − Hc

TMHc �8�

Considering that AM−1AT is a symmetric matrix for M is sym-
metric, we obtain

Hc
TM = AT�AM−1AT�−TAM−TM = AT�AM−1AT�−1A �9�

Hc
TMHc = AT�AM−1AT�−1�AM−1AT��AM−1AT�−1A

= AT�AM−1AT�−1A �10�

Equations �9� and �10� show that Hc
TM=Hc

TMHc. Using Eq. �8�
and noting that Ha

TMHc= �Hc
TMHa�T, we obtain

Hc
TMHa = O Ha

TMHc = O �11�

which shows the orthogonality of the projection operators with
respect to the total mass matrix of the system.

The direct consequence of Eq. �11� is that the second and third
terms in Eq. �5� vanish. These terms represent the coupling be-
tween the kinetic energies associated with the spaces of con-
strained and admissible motions, since they contained both q̇a and
q̇c. Therefore, the said decomposition completely decouples the
kinetic energy of the whole system, and hence

T = Tc + Ta =
1

2
�Hcq̇�TM�Hcq̇� +

1

2
�Haq̇�TM�Haq̇� �12�

where Tc is the kinetic energy associated with the constrained
motion, i.e., the normal directions of the contact pairs; Ta is in
turn the kinetic energy associated with the admissible motion. We
emphasize again that this decomposition is physically meaningful,
i.e., completely consistent with the potentially different physical
units of the generalized coordinates. It has to be noted that we
present here the proof of decoupling for the case of independent
constraints. However, it can be shown that this decoupling also
holds for the general case where the constraints are not necessarily
independent. In such a case, the simplifications in Eqs. �6� and �7�
cannot be performed; the orthogonality of the projection operators
can be shown, for example, by directly using a singular-value-
decomposition-based interpretation of the generalized inverses in
product Hc

TMHa. The formulation provided above are derived for
the general case and are valid for the general motion �translation
and rotation� of the elements of a multibody system.

We illustrate the above-mentioned complete decoupling, with
the aid of Eqs. �4�, �5�, �11�, and �12�: For a fixed configuration of
the multibody system, any variation of the generalized velocity
vector that lies in the space of admissible motion affects only part
Ta, while leaving part Tc of the kinetic energy unchanged. On the
other hand, if any variation of the vector of generalized velocities
lies in the space of constrained motion, it causes part Tc to change,
but it does not affect Ta at all. These considerations clearly show
that the decomposition discussed completely isolates the kinetic
energies of admissible motion and constrained motion. This is an
important property, which makes decomposition �12� useful in the
energy analysis of unilaterally constrained mechanical systems.

1For a full row rank matrix S, the right Moore-Penrose generalized inverse can be
expressed as S†=ST�SST�−1.

Fig. 1 General unilaterally constrained multibody system
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3 Analysis of Energy Dissipation During Impact
The above decomposition can provide new perspectives on both

the dynamics of contact and investigation of energy absorption
and restitution during impact of multibody systems. If we consider
the work done by normal contact forces, this affects only the
kinetic energy associated with the space of constrained motion Tc.
This can be readily perceived by considering the physical mean-
ing of the decomposition at hand, and that the normal contact
forces represent vectors in the dual of the space of constrained
motion �7,8�. Therefore, the absorption and restitution of energy
due to the effect of energy-dissipating mechanisms acting in the
normal directions of contact pairs during impact only changes the
value of the kinetic energy of the constrained motion Tc. In other
words, the energy dissipation due to the plastic deformation of the
contact areas along the normal directions and other effects asso-
ciated with the normal contact forces causes Tc to decrease, while
leaves Ta unchanged. On the other hand, the energy loss due to
friction and other energy-dissipating elements acting in the tan-
gential directions of the contact pairs reduces Ta during the impact
phase and does not directly affect Tc. This is a direct result of the
complete decoupling of the kinetic energy. We have to note that
during the impact period, the configuration of the system is as-
sumed to remain unchanged. Therefore, although the generalized
inertia matrix is a function of the system configuration specified
by the generalized coordinates, it will remain constant during im-
pact. Consequently, the same mutually orthogonal vector spaces
can be used to represent the system before and after impact �in the
pre- and post-impact instants�. Hence, we can directly use this
decoupling to study the energy absorption and restitution occur-
ring in the two phases of impact.

Let us consider an impact in a multibody system �Fig. 1�, and
study the compression and restitution phases of the impact be-
tween the two bodies involved. Based on its definition, the com-
pression phase ends when the normal relative velocity of the con-
tact points belonging to the colliding bodies vanishes. This means
that, at the end of compression, the projection of the vector of
generalized velocities into the space of constrained motion is the
zero vector �q̇c=0�. This consequently implies that the kinetic
energy of the constrained motion decreases to zero at the end of
compression. Conclusively, the compression phase ends when Tc
of the system vanishes. On the other hand, in the restitution phase,
the part of the energy that is recovered due to the positive work of
the normal contact forces is transformed back into the kinetic
energy associated with the normal directions, driving the two bod-
ies apart. This indicates that, during restitution, the elastic strain
energy that is recovered due to the effect of normal contact forces,
is actually transformed into the kinetic energy associated with the
constrained motion �Tc�. Thus, the amount of Tc of the interacting
multibody systems after impact will be the same as the amount of
the energy released during restitution due to the positive work of
normal contact forces.

The difference between the energy absorbed during compres-
sion and the energy released during restitution, due to the effect of
normal contact forces, describes the energy loss that is due to the
dynamics characteristics associated with the normal directions of
impact �9�. Therefore, we conclude that the difference between the
amounts of the kinetic energy of constrained motion before and
after impact defines this energy loss. This can result in a new
interpretation for the energetic coefficient of restitution. This new
interpretation will be introduced particularly for the interaction of
complex systems. The energetic coefficient of restitution was
originally defined for the impact of two single bodies, considering
the normal direction of contact. The definition given in �9� is

e*
2 = −

Wn�pf� − Wn�pc�
Wn�pc�

�13�

where Wn�pf� is the work done by the normal contact force during
the whole period of impact �compression and restitution phases�,

Wn�pc� is the work of the normal contact force in the compression
phase, and e* represents the energetic coefficient of restitution.
The new interpretation can be based on the ratio of the post- and
pre-impact values of the kinetic energy of the constrained motion
�Tc� and can be written as

e* =�T c
+

T c
− �14�

where T c
+ and T c

− are the post- and pre-impact kinetic energies of
constrained motion, respectively. Such an interpretation of the en-
ergetic coefficient of restitution can be of considerable potential in
the dynamics of impact in multibody systems. This coefficient can
be used, similar to the other coefficients of restitution, to deter-
mine the post-impact state of the system. However, this new defi-
nition is originally given for impact scenarios involving multibody
systems and can capture the effect of not only local, but also
global energy-dissipating features �e.g., losses due to wave propa-
gation�. The coefficient of restitution defined in Eq. �14� can ad-
dress the general case of simultaneous multiple-point impact sce-
narios, as opposed to the other types of coefficients of restitution.
However, for that case, we have to assume that the normal contact
impulses developed in all closed contact pairs are compressive.
Therefore, they contribute to kinetic energy dissipation during im-
pact. In general, simultaneous multiple-point impact problems,
cases might occur where some of the closed contact pairs have
zero normal impulses �2,10,11�. These are excluded here. The
detailed discussion on such cases, as well as the potential appli-
cations and advantages of the proposed definition of the energetic
coefficient of restitution are the subjects of our ongoing work and
will be addressed in upcoming papers.

Further, the new definition given in Eq. �14� can be used to
unify the concepts of the energetic and the Newtonian coefficients
of restitution. To elaborate more on this, let us look at the math-
ematical expression describing our new interpretation for the en-
ergetic coefficient of restitution

e* =�T c
+

T c
− =�� 1

2 q̇c
TMq̇c�+

� 1
2 q̇c

TMq̇c�− =��q̇c
TMq̇c�+

�q̇c
TMq̇c�− �15�

We can consider that the generalized velocities are geometrically
interpreted in the tangent space of the configuration manifold,
where the metric tensor representation is the mass matrix �4,12�.
Hence, the numerator and denominator of the above equation rep-
resent the norm of q̇c after and before impact, respectively. On the
other hand, Newton’s coefficient of restitution is defined as the
ratio of the normal relative velocities of the contact points after
and before impact. Further, note that q̇c is the part of the general-
ized velocity vector which is associated with the normal �con-
strained� directions of the contact pairs. Thus, one can observe
that the Newtonian coefficient of restitution can be seen as a spe-
cial type of the generalized energetic coefficient of restitution,
where the mass matrix �metric tensor representation of the tangent
space of the configuration manifold� is in a very simple form and
can be eliminated from the expression.

In the tangential directions of contact, the energy dissipated due
to friction, and other effects acting in tangential directions, causes
the kinetic energy of admissible motion �Ta� to decrease. The
difference between the values of Ta before and after impact mea-
sures the energy loss due to the energy-dissipating processes as-
sociated with the tangential directions of the contact pairs. The
decoupling of the kinetic energy provides us with a tool to analyze
the energy losses associated with both the normal and tangential
�constrained and admissible� directions of the contact pairs.

The formulation discussed here can also have many other po-
tential applications. One can be the optimum design of systems
aimed to have high energy-dissipating capabilities �e.g., damping
the relative motion� in the normal or tangential directions of im-
pact. Examples of such systems can be found in vehicle suspen-
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sion systems or aircraft landing gears. In such cases, the kinetic
energy of constrained motion Tc �or the one associated with ad-
missible motion Ta�, expressed in terms of the generalized coor-
dinates and generalized velocities of the system, should be mini-
mized over a desired period of time, which can be considered as a
design objective. This can open up possibilities to develop novel
design concepts in such applications.

The concept of decoupling of the kinetic energy can also be
used to improve the operational conditions in contact onset. For
example, we consider the case in which the smooth contact task of
a robotic manipulator with a stiff environment is of interest. This
means that the normal contact velocity between the end-effector
and the environment should decrease to zero in the shortest pos-
sible time after the first contact takes place. This objective will be
satisfied if the kinetic energy of the constrained motion �Tc� at-
tains its minimum value at the pre-impact instant. Such a decou-
pling can also be performed for other instants when the unilateral
constraints are not active. This can be advantageous in feedback
control, when the objective is to minimize the effects of impact on
the system. This goal can be met if the decomposed generalized
velocities are controlled properly. The decoupling and analysis
presented in this work can lead to methods to develop optimum
trajectories resulting in a minimum jump in the constrained mo-
tion after impact.

4 Numerical Illustration
To illustrate the foregoing ideas, we analyze the single-point

contact of the three-link robotic arm shown in Fig. 2. In the initial
configuration of the arm, its end-point is a finite distance above a
fixed flat plate. The arm is then released from this configuration,
and undergoes a series of collisions with the plate. A model-based
controller is used to ensure that the end-point of the arm has a
desired velocity in the pre-impact instant just before the first col-
lision. In the pre-impact instant, the controller is removed to allow
us to focus on the effects of the impacts. Our aim is to give a
qualitative type of illustration. Therefore, the magnitude of the
various quantities is not really important here. We note that it is
assumed that only the end-point of the third link will undergo
collisions.

We consider impacts where friction is neglected, in order to
highlight the decoupling discussed above. In this case, all three
types of the coefficients of restitution �kinematic, kinetic, and en-
ergetic� lead to the same results. It can also be shown that for
frictionless contact scenarios, our new definition for the energetic
coefficient of restitution leads to the same results as the other
types of coefficients of restitution, which will be proved in detail
in subsequent papers. Here, we developed the simulation based on
the energetic coefficient of restitution �9� with a value of 0.85. The
parameters used for this example are given in more detail in Ap-
pendix A.

Figure 3 shows the displacement and the relative normal veloc-
ity histories of the end-point with respect to the plate. Figure 4
shows the decomposition of the generalized velocity vector based
on Eq. �4�. The results show that the component in the space of
constrained motion �q̇c� is heavily influenced by the repeated im-
pacts, while the component in the space of admissible motion �q̇a�

is not affected. The decomposition of the kinetic energy based on
Eq. �12� is shown in Fig. 5. It can again be observed that only the
part associated with the space of constrained motion �Tc� is in-
volved directly in the impacts. The kinetic energy of admissible
motion �Ta� does not contain jump discontinuities; it is not af-
fected directly by the contacts. We also evaluated our new inter-
pretation for the energetic coefficient of restitution. Equation �14�
was evaluated for each impact. It gave back exactly the value of
the coefficient of restitution that was used to develop the simula-
tion based on the technique described in �9� using Eq. �13�. This
also shows that the new interpretation is valid. We believe that our
interpretation is actually more general. It can also address the case
of multiple-point contacts in complex systems where we can de-
fine a kind of an “effective” coefficient of restitution that is not
necessarily associated with a single-point contact.

Based on the foregoing results, several, nontrivial phenomena
can also be observed. We do not discuss these here in detail, but
highlight a few important points. Although energy is dissipated in
each collision, it can also happen that the kinetic energy of the
whole system actually increases after impact. The reason here is
the way in which gravitational and kinetic energies are trans-
formed into each other, and how they are distributed between the
various elements of the system and the two subspaces of the tan-
gent space. In other words, although kinetic energy is dissipated
during the impact period �Fig. 5�, it can increase over a finite
period of time due to the possible transformation of gravitational
potential energy into kinetic energy. This is why, in some colli-
sions, the end-effector bounces higher than in the previous one.

Fig. 2 Unilaterally constrained three-link planar manipulator

Fig. 3 Displacement and velocity of the end-point in the nor-
mal direction of contact
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Over a finite period of time, the energy loss can be observed by
investigating the total mechanical energy of the system �Fig. 6�.
This shows again that the energy analysis of impact in complex
systems is far from being trivial. The decomposition and decou-
pling introduced in this work can be a useful tool to further ad-
vance our understanding of impacts in unilaterally constrained
systems.

In the above study, an example of a frictionless contact problem
has been considered. Such an example has been used to put into
perspective the useful features of the decomposition approach dis-
cussed above. However, the analysis of frictional impact problems
involving multibody systems will require a detailed analysis of the
tangential dynamics characteristics of the system as well. We be-
lieve that the proposed method can also be considerably useful to
study dynamic behavior of frictional impact problems, which will
be the focus of our future work.

5 Conclusions
In this paper we introduced an analysis intended to characterize

impacts in multibody systems. The highlights of this analysis are
the decomposition of the unilaterally constrained generalized ve-
locity vector of a multibody system, and the decoupling of the

kinetic energy. The kinetic energy is split into two independent
parts: one is associated with the normal directions of contact, the
other with the tangential directions of the contact pairs. These
normal and tangential directions of the contact pairs are also rep-

Fig. 4 Generalized velocities associated with admissible and
constrained motions

Fig. 5 Kinetic energies of constrained Tc and admissible Ta
motions

Fig. 6 Total mechanical energy of the manipulator
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resented in the tangent space of the configuration manifold, as the
space of constrained motion and the space of admissible motion.
This representation makes possible the above-mentioned decom-
position. The analysis holds for holonomic, scleronomic systems
subject to a set of unilateral constraints. We addressed the case
primarily when the constraints describing the relative motion of
colliding bodies are linearly independent.

This decomposition of the kinetic energy is useful in the analy-
sis of absorption, restitution and dissipation of energy during im-
pacts. The kinetic energy can be decoupled in the pre- and post-
impact instants, which makes it possible to gain insight into the
nature of the interaction, and determine how the kinetic energy is
distributed among the representative directions of the contact
pairs. For instance, this can lead to a new interpretation for the
energetic coefficient of restitution, defined particularly for colli-
sions involving multibody systems. This new interpretation is also
valid for simultaneous multiple-point contact scenarios if all the
closed contacts contribute to the energy dissipation. We believe
that the material reported here can be applied in the optimum
design, dynamic analysis and feedback control of multibody sys-
tems undergoing impact.
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Appendix A
The example studied in Sec. 4 involves a three-link planar ro-

botic manipulator, where each link is modeled as a slender rigid
beam with length and weight of 1 m and 5 kg, respectively. The
second moment of inertia about the axis perpendicular to the plane
through the center of mass for each link is assumed to be Izz
=5/12 kg m2.

A computed torque control algorithm is employed to move the
system from its initial configuration to the pre-impact position.
The initial and pre-impact configurations of the system are ex-
pressed as

q1
I = �/4, q2

I = 0, q3
I = 0

q1
F = �/3, q2

F = − �/3, q3
F = − �/3

where the superscripts “I” and “F” denote the initial and pre-
impact configurations, respectively �Fig. 2�. The controller is de-
signed in a way that in the pre-impact instant, the normal and
tangential velocities of the end-point of the third arm would be
−1 m/s and 1 m/s, respectively, where the positive normal and
tangential directions are assumed upward and to the right, respec-
tively. The third arm is desired to have zero angular velocity in the
pre-impact instant. The value of the energetic coefficient of resti-
tution is assumed to be 0.85.

Appendix B
In this appendix, we briefly outline the procedure of derivation

of the projection operators given in Eqs. �2� and �3�, following the
method given in �5�. Let us assume that a general multibody sys-
tem is subject to a set of bilateral constraints which can be stated
at the velocity level in the form

A�q,t�q̇ + h�q,t� = 0 �A1�

where A is the constraint Jacobian matrix and h represents any
prescribed rheonomic terms. Therefore, the virtual displacements
�q must be compatible �admissible� with such constraints and
should satisfy the relation

A�q = 0 �A2�
Based on the above equation, the vector of virtual displacements
��q� can be decomposed into two parts, as follows

�q = �qc + �qa �A3�

where �qa is the part which is kinematically admissible with the
constraints, and �qc is the part that is specified by the constraints.
Thus, using these ideas, it is possible to decompose the tangent
space of the configuration manifold into two mutually orthogonal
subspaces, namely, the spaces of admissible and constrained mo-
tions. Matrix A can also be interpreted in a more general sense as
a representation of a linear transformation operating on vectors in
the tangent space of the configuration manifold. Therefore, this
decomposition is also valid for any particular configuration where
the equality sign is relaxed in Eq. �A1�, and we arrive to unilateral
constraints. It is of interest to do the decomposition using the
original �potentially redundant� set of generalized coordinates,
without the introduction of a new independent set. However, due
to the potential inhomogeneity of the elements of the virtual dis-
placement vector in physical units, methods of matrix computa-
tions cannot directly be used. First, we need to find a transforma-
tion taking the virtual displacement vector into a vector
homogeneous in physical units. Considering the Cholesky decom-
position of the generalized mass matrix of the system, i.e., M
=UTU, the following transformation can be established

�qh = U�q �A4�

where the subscript “h” denotes the homogeneity of the corre-
sponding parameter in physical units. Based on the above equa-
tion, Eq. �A2� can be rewritten as

A�q = AU−1�qh = Ah�qh �A5�

where the rows of matrix Ah=AU−1 are also homogeneous in
physical units. Therefore, the product Ah

TAh makes physical sense
and it is possible to perform the singular value analysis of matrix
Ah, in a physically meaningful way, to obtain the projection op-
erators associated with the admissible and constrained subspaces
of the tangent space, as follows �5,6�.

�qh = �qch + �qah = Ah
†Ah�qh + �I − Ah

†Ah��qh �A6�

where I represents an n�n identity matrix. This can then be used
along with Eq. �A4� to establish the decomposition for the original
components as

�q = �qc + �qa = Hc�q + Ha�q �A7�
where

Hc = U−1�AU−1�†A
�A8�

Ha = I − U−1�AU−1�†A

where Hc and Ha represent the orthogonal projection operators
associated with the spaces of constrained and admissible motions,
respectively.
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Nonlinear Behavior and Critical
State of a Penny-Shaped
Dielectric Crack in a Piezoelectric
Solid
By means of the Hankel transform and dual-integral equations, the nonlinear response of
a penny-shaped dielectric crack with a permittivity �0 in a transversely isotropic piezo-
electric ceramic is solved under the applied tensile stress �z

A and electric displacement
Dz

A. The solution is given through the universal relation, Dc /�z
A=KD /KI=MD /M�, re-

gardless of the electric boundary conditions of the crack, where Dc is the effective
electric displacement of the crack medium, and KD and KI are the electric displacement
and the stress intensity factors, respectively. The proportional constant MD /M� has been
derived and found to have the characteristics: (i) for an impermeable crack it is equal to
Dz

A /�z
A; (ii) for a permeable one it is only a function of the ceramic property; and (iii) for

a dielectric crack with a finite �0 it depends on the ceramic property, the �0 itself, and the
applied �z

A and Dz
A. The latter dependence makes the response of the dielectric crack

nonlinear. This nonlinear response is found to be further controlled by a critical state
��c ,Dz

A�, through which all the Dc versus �z
A curves must pass, regardless of the value of

�0. When �z
A��c, the response of an impermeable crack serves as an upper bound,

whereas that of the permeable one serves as the lower bound, and when �z
A��c the

situation is exactly reversed. The response of a dielectric crack with any �0 always lies
within these bounds. Under a negative Dz

A, our solutions further reveal the existence of a
critical �*, given by �*=−RDz

A, and a critical D*, given by D*=−�0 /R (R depends only
on the ceramic property), such that when �0��* or when �Dz

A�� �D*�, the effective Dc

will still remain positive in spite of the negative Dz
A. �DOI: 10.1115/1.2712227�

1 Introduction
Piezoelectric ceramics are brittle in nature and they often pos-

sess sharp cracks, which could inhibit their potential applications.
In order to provide better understanding on the fracture behavior
of this class of materials, a vast body of literature has been devel-
oped over the past 2 decades. A central issue involved in the study
is the electrical boundary condition. Earlier studies have often
treated it as either a permeable �1� or an impermeable one �2–8�.
These approaches have shed some light on the fracture behavior
of piezoelectric materials, but as pointed out by McMeeking �9�,
Pak �3�, Suo et al. �7�, Zhang and Hack �10�, Zhang �11�, Dunn
�12�, Park and Sun �8�, Sosa and Khutoryansky �13�, and Zhang et
al. �14�, among others, these two boundary conditions may lead to
some unrealistic results under certain conditions. The simplicity
offered by these two boundary conditions was also the reason for
their adoption in most dynamic analyses �15–18�. Of course this is
not to say that analyses based on the permeable or impermeable
conditions—especially under Mode II and III loadings—are with-
out merit, as when a crack is idealized as zero thickness and never
opens up, one can only set the electric potential as either continu-
ous or discontinuous across the crack surfaces and this would lead
to these two types of conditions. For a “closed” crack, the electric
permittivity “inside the crack” really plays no role and physically
it should never appear in the crack boundary condition. It is only
after the crack has opened up that the electric permittivity inside
the crack starts to influence the crack–tip behavior.

Under a tensile loading the crack will open up, and the dielec-
tric permittivity of the crack medium, �0, will play a crucial role.
In this case it is essential to introduce the dielectric permittivity �0
into the boundary condition. With such a perspective, Parton and
Kudryavtsev �19� have suggested using the separation of crack
surfaces as a measure for the calculation of electric field from the
potential drop, while Hao and Shen �20� have suggested the crack
opening displacement as the measure for the drop. In addition
Shindo et al. �21� and Yang �22� have also suggested direct imple-
mentation of the continuity of the normal electric displacement
and electric potential from the lower crack surface to the crack
medium and then to the upper crack surface. By taking the effect
of �0 into consideration, various electro–elastic behaviors of a
dielectric crack have been reported by Shindo et al. �23�, Mc-
Meeking �24�, Xu and Rajapakse �25�, Wang and Jiang �26�, Das-
calu and Homentcovisch �27�, and Wang and Mai �28�, Zhang and
Gao �29�, among others, for a two-dimensional �2D� crack.

This paper is concerned with the response of a 3D penny-
shaped dielectric crack. The penny-shaped crack problem can be
treated as a limiting case of a spheroidal crack, or directly as a
crack with flat surfaces. The spheroidal problem is a piezoelectric
analog of Eshelby’s �30� elastic problem. This approach has been
taken by Wang �31�, Kogan et al. �32�, Huang �33�, and Chiang
and Weng �34�. Both Wang’s and Huang’s works were formulated
in Eshelby’s framework and performed for an impermeable crack,
while that of Kogan et al. was developed using the harmonic
potentials. Chiang and Weng made use of the Eshelby-type elec-
tromechanical S tensor derived by Dunn and Wienecke �35� in
their analysis and gave explicit results for a strongly oblate cavity
with a finite dielectric permittivity. While these analyses do offer
valuable insights into the general characteristics of a spheroidal
void, many important characteristics for a flat crack could not be
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simply extracted from it as a limiting case, for a flat crack with a
finite radius, a, cannot be represented by a spheroidal void.

We shall follow the second approach by treating the crack with
flat surfaces at the outset. Along this line we have seen several
important studies on the penny-shaped crack in recent years. Chen
and Shioya �36,37� have used Fabricant’s �38� potential theory
and the formulation of Ding et al. �39�, to find the solution of a
pair of concentrated forces and examined some fundamental char-
acteristics of an impermeable crack. Zhao et al. �40� have used the
Somigliana identity to solve the boundary integral equations for a
penny-shaped crack parallel to the free boundary of a half space.
Using the permeable boundary condition Yang and Lee �41,42�
have examined the crack characteristics for a piezoelectric strip
under both normal and nonaxisymmetric loading. By considering
the constitutive equation of the dielectric medium, Lin et al. �43�
have included the effect of �0 into their formulation. Li and Lee
�44� have implemented the Hao–Shen type boundary condition to
solve the crack problem in a piezoelectric layer. Their results il-
lustrate the strong dependence of the crack opening displacement
intensity factor on �0 as a function of the applied electric field. In
addition, Chen and Lim �45� have solved the nonaxisymmetric,
point force problem that is applied at the crack faces of a
permeable crack.

Against the backdrops of these contributions, our focus here is
on the development of effective electric displacement Dc of the
crack medium due to the presence of �0. More specifically we
plan to examine the dependence of Dc on the applied tensile stress
�z

A, axial electric displacement Dz
A, and dielectric permittivity �0.

This issue has not been explored in the past, and it also has direct
implications on the determination of the electric displacement in-
tensity factor KD in terms of the stress intensity factor KI and the
dielectric permittivity �0. Our analysis will reveal that the re-
sponse of the dielectric crack is nonlinear, but those of the imper-
meable and permeable ones are linear, and these linear responses
will serve as the upper and lower bounds of the nonlinear re-
sponse. We shall also report that there exist several critical states
that define the transition of the nonlinear response of the dielectric
crack under both positive and negative Dz

A. The existence of such
a critical state is also a new feature that is not found in the litera-
ture. Along the way to a full analysis of the dielectric crack, we
will also collect some known and some new results for the imper-
meable and permeable cracks. We shall cast the linear nature of
the two idealized cracks and the nonlinear characteristics of the
dielectric crack in a universal relation through which their distinct
features can all be made transparent.

We note in passing that most piezoelectric ceramics are also
ferroelectric and that they could undergo domain switch under
certain electromechanical load �46–48�. The constitutive behavior
of a ferroelectric ceramic is nonlinear. In this study we will limit
our analysis to the linear range of ceramic response.

2 Field Equations of a Transversely Isotropic Solid
Under Axisymmetric Load

As pointed out by Ikeda �49�, there are four major ways to write
the linear constitutive relations of a piezoelectric solid, but for the
present problem it is most suitable to choose

�ij = Cijkl�kl − enijEn

Dm = emkl�kl + �mnEn �1�

where �, �, D, and E are tensors of the stress, strain, electric
displacement, and electric field, respectively; C and � are elastic
stiffness at constant electric field and dielectric permittivity at
constant strain; and e is the piezoelectric moduli tensor. The strain
and electric field are derivable from the displacement ui and elec-
tric potential � as

�ij =
1

2� �ui

�xj
+

�uj

�xi
� ; Ei = −

��

�xi
�2�

In the absence of body force and space charge, the equation of
equilibrium and the charge equation of electrostatics assert

��ij

�xj
= 0;

�Di

�xi
= 0 �3�

For a transversely isotropic ceramic with the 6mm symmetry
along the z axis �poling direction�, the components of the electro-
mechanical moduli in Eq. �1� carry the form

�
C11 C12 C13 0 0 0 0 0 − e31

C12 C11 C13 0 0 0 0 0 − e31

C13 C13 C33 0 0 0 0 0 − e33

0 0 0 C44 0 0 0 − e15 0

0 0 0 0 C44 0 − e15 0 0

0 0 0 0 0 C66 0 0 0

0 0 0 0 e15 0 k11 0 0

0 0 0 e15 0 0 0 k11 0

e31 e31 e33 0 0 0 0 0 k33

	 �4�

in Nye’s �50� contracted notations, where C66=1/2�C11−C12�. It
follows that, after substituting Eq. �2� into Eq. �1� and rewriting
them in the cylindrical coordinates �r ,� ,z�, we have the nonvan-
ishing components of stress and electric displacement in terms of
u and �, as

�r = C11
�ur

�r
+ C12

ur

r
+ C13

�uz

�z
+ e31

��

�z

�� = C12
�ur

�r
+ C11

ur

r
+ C13

�uz

�z
+ e31

��

�z

�z = C13
�ur

�r
+ C13

ur

r
+ C33

�uz

�z
+ e33

��

�z

�zr = C44� �ur

�z
+

�uz

�r
� + e15

��

�r

Dr = e15� �ur

�z
+

�uz

�r
� − �11

��

�r

Dz = e31
�ur

�r
+ e31

ur

r
+ e33

�uz

�z
− �33

��

�z
�5�

Similarly Eq. �3� can be written as

��r

�r
+

��zr

�z
+

�r − ��

r
= 0

��zr

�r
+

��z

�z
+

�zr

r
= 0

�Dr

�r
+

�Dz

�z
+

Dr

r
= 0 �6�

This in turn leads to the field equations in terms of displacement
and electric potential as

C11
 �2ur

�r2 +
�

�r
�ur

r
�� + C44

�2ur

�z2 + �C13 + C44�
�2uz

�r�z

+ �e31 + e15�
�2�

�r�z
= 0
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�C13 + C44�� �2ur

�r�z
+

1

r

�ur

�z
� + C33

�2uz

�z2 + C44� �2uz

�r2 +
1

r

�uz

�r
�

+ e15� �2�

�r2 +
1

r

��

�r
� + e33

�2�

�z2 = 0

�e31 + e15�� �2ur

�r�z
+

1

r

�ur

�z
� + e33

�2uz

�z2 + e15� �2uz

�r2 +
1

r

�uz

�r
�

− �11� �2�

�r2 +
1

r

��

�r
� − �33

�2�

�z2 = 0 �7�

We now solve the above partial differential equations with suit-
able crack conditions prescribed over the crack surfaces by the
integral transform method �51�.

3 General Solutions and Boundary Conditions
The problem of a penny-shaped crack loaded under an external

tensile stress �z
A and axial electric displacement Dz

A can be con-
sidered as a superposition of a uniform one and another with a
suitable boundary condition on the crack surfaces. The first part of
the problem is trivial so we will focus on the second part.

Guided by the solution of elasticity, the displacement and elec-
tric potential for the second part can be written through the
Hankel transform

ur =�
0

	

Ar�s�J1�sr�exp�
sz�ds

uz =�
0

	

Az�s�J0�sr�exp�
sz�ds

� =�
0

	

A��s�J0�sr�exp�
sz�ds �8�

where J0 and J1 are Bessel’s functions of order zero and one,
respectively. The functions Ar�s�, Az�s�, and A��s� are yet to be
determined.

Substituting Eq. �8� into Eq. �7�, it turns out that it is sufficient
to have these unknown functions in the following form

Ar�s� = ArQ�s�, Az�s� = AzQ�s�, A��s� = A�Q�s� �9�

where Q�s� depends only on the boundary conditions, while the
coefficients Ar, Az, and A� must satisfy

�− C11 + C44

2�Ar − �C13 + C44�
Az − �e31 + e15�
A� = 0

�C13 + C44�
Ar + �C33

2 − C44�Az + �e33


2 − e15�A� = 0

�e31 + e15�
Ar + �e33

2 − e15�Az + ��11 − �33


2�A� = 0 �10�

This is a system of homogeneous equations. To have a nontrivial
solution, the value of 
 must make the following determinant
vanish

− C11 + C44

2 − �C13 + C44�
 − �e31 + e15�


�C13 + C44�
 C33

2 − C44 e33


2 − e15

�e31 + e15�
 e33

2 − e15 �11 − �33


2  = 0 �11�

The above condition yields a polynomial function of six orders,
which is exactly the characteristic equation introduced in Chiang
and Weng �34�, a variant of those in Dunn and Wienecke �35�.
Ignoring the degenerate conditions, two cases are possible:

�i� 
 = ± p, ± q, ± r �12�

or

�ii� 
 = ± p, ± q ± ir �13�

where p, q, and r are real and positive �this r appears here only
momentarily and should not be confused with the radial distance�.
Since it is sufficient to consider only a half-space for the present
problem, we shall focus on the region z�0, so only the roots with
the positive real part—that is, p, q, r in �i�, or p, q+ ir, q− ir in
�ii�—will be taken. Let the three roots be denoted by 
1, 
2, and

3, and each eigen number corresponds to an eigen “vector,” that
is, �Ar ,Az ,A��. The solution then can be written in the following
form

ur = �
�=1

3

Ar��
0

	

Q�s�J1�sr�exp�
�sz�ds

uz = �
�=1

3

Az��
0

	

Q�s�J0�sr�exp�
�sz�ds

� = �
�=1

3

A���
0

	

Q�s�J0�sr�exp�
�sz�ds �14�

As the components of eigenvectors must satisfy the homoge-
neous equations Eq. �10�, it implies that, for a given 
�, we have

���
z �

Az�

A��

=
�C11 − C44
�

2��e33
�
2 − e15� − �C13 + C44��e31 + e15�
�

2

�C13 + C44�2
�
2 − �C33
�

2 − C44��C11 − C44
�
2�

�15�

���
r �

Ar�

A��

=
�C33
�

2 − C44��e31 + e15�
� − �C13 + C44�
��e33
�
2 − e15�

�C13 + C44�2
�
2 − �C33
�

2 − C44��C11 − C44
�
2�

�16�

where the � are dependent only on the ceramic property, not on
the boundary conditions. In this way we just have three unknowns
A�1, A�2, and A�3 remaining to be determined. In reality we may
set A�1=1 �i.e., choose the real eigen number as 
1� without loss
of generality, for it is only a normalization factor for the function
Q�s�, while the other two can be determined from the boundary
conditions.

This set of eigenvalues is in fact connected to that of the Stroh–
Lekhnitskii formalism �52–54� by p�= i
�, where p� are their ei-
genvalues �see, for instance, Eq. �C7� of Suo et al. �7� and Eq.
�18� of Sosa �5��. A similar connection was previously established
by Chiang �55� in the elastic context.

3.1 Boundary Conditions. It follows that, on the boundary
z=0, the fields are given by

�zr = �
�=1

3

�C44�Ar�
� − Az�� − e15A����
0

	

sQ�s�J1�sr�ds �17�

�z = �
�=1

3

�C13Ar� + C33
�Az� + e33
�A����
0

	

sQ�s�J0�sr�ds

�18�

Dz = �
�=1

3

�e31Ar� + e33
�Az� − �33
�A����
0

	

sQ�s�J0�sr�ds

�19�
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uz = �
�=1

3

Az��
0

	

Q�s�J0�sr�ds �20�

� = �
�=1

3

A���
0

	

Q�s�J0�sr�ds �21�

Since �zr=0

�
�=1

3

�C44�
�Ar� − Az�� − e15A��� = 0 �22�

Furthermore, uz and � both satisfy

�
�=1

3

Az��
0

	

Q�s�J0�sr�ds = 0, r � a �23�

�
�=1

3

A���
0

	

Q�s�J0�sr�ds = 0, r � a �24�

Now for brevity we set

M� � �
�=1

3

m�
� � �

�=1

3

�C13Ar� + C33
�Az� + e33
�A��� �25�

MD � �
�=1

3

m�
D � �

�=1

3

�e31Ar� + e33
�Az� − �33
�A��� �26�

which, in view of Eqs. �15� and �16�, can be rewritten as

M� � �
�=1

3

m�
� � �

�=1

3

�C13���
r + C33
����

z + e33
��A�� �27�

MD � �
�=1

3

m�
D � �

�=1

3

�e31���
r + e33
����

z − �33
��A�� �28�

It turns out that the ratio, MD /M� will play a central role in the
response of the dielectric crack.

The permittivity of the crack medium obviously has no effect
on the mechanical boundary condition, which can be simply set
by −�z

A, as

M��
0

	

sQ�s�J0�sr�ds = − �z
A, 0 � r � a �29�

where we have taken the origin to be at the center of the crack,
and a is the crack radius.

The permittivity of the crack medium on the other hand will
affect the electric boundary condition. We may consider that its
influence is to introduce an extra electric displacement that is
caused by the deformation of the crack. This extra electric dis-
placement is given by

Dc = − �0
�

uz
�30�

So on the crack surfaces instead of imposing −Dz
A, we now have

to impose the total one, −Dc, that is

− Dc = − Dz
A + Dc

or

Dc = Dz
A − Dc �31�

and the electric boundary condition becomes

MD�
0

	

sQ�s�J0�sr�ds = − Dc, 0 � r � a �32�

The total electric displacement Dc will henceforth be called the
effective electric displacement of the dielectric crack. Its magni-
tude defines the electric response of the dielectric crack, and it
also provides the connection between the electric displacement
intensity factor KD and the stress intensity factor, KI.

We now solve these integral equations.

4 Impermeable and Permeable Cracks
Before we proceed to analyze the response of the dielectric

crack, it is of interest to explore the consequences of these gov-
erning equations for the two limiting cases of �0=0 and �0→	
first. These correspond to the conditions of an impermeable and a
permeable crack, respectively, and the problem is linear.

4.1 Impermeable Crack: �0=0. It proves advantageous to
consider the inhomogeneous boundary conditions Eqs. �29� and
�32� separately. We first solve the dual integral equations by as-
suming Dz

A=0. The corresponding eigenvectors must be chosen to
satisfy this condition. Since ��=1

3 Az��0 in general, standard dual
integral equations yield

�
0

	

sQ��s�J0�sr�ds = −
�z

A

M�

, 0 � r � a �33�

�
0

	

Q��s�J0�sr�ds = 0, r � a �34�

The solution to the equations is well known �51,56�

Q��s� =
− 2

�M��
0

a

sin�st�dt�
0

t
r�z

Adr

�t2 − r2�1/2 �35�

Likewise by taking �z
A=0, we can write

QD�s� =
− 2

�MD�
0

a

sin�st�dt�
0

t
rDz

A dr

�t2 − r2�1/2 �36�

We first solve for Q��s�. With A�1=1 and from the boundary
conditions Eqs. �29� and �32� �setting Dc=0�, we obtain

A�2 =
− n1c3 + n3c1

n2c3 − n3c2
, A�3 =

− n2c1 + n1c2

n2c3 − n3c2
�37�

where

n� = C44
����
r − C44���

z − e15

and

c� = e31���
r + e33
����

z − �33
� �38�

The corresponding results for QD�s� are similar to Eq. �37� by
simply replacing c with the following definition

c� = C13���
r + C33
����

z + e33
� �39�
This completes the full field solution by superposition of the two.

For the stress and electric displacement intensity factors, we
have

KI =
1

��a
�

0

a
r�z

A�r�dr

�a2 − r2
�40�

and
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KD =
1

��a
�

0

a
rDz

A�r�dr

�a2 − r2
�41�

as there is no coupling on z=0. When the applied stress and elec-
tric displacement are uniform, the stress intensity factor KI and
electric displacement intensity factor KD reduce to

KI =
2

�
�z

A��a, KD =
2

�
Dz

A��a �42�

We thus recover the well-known results that both intensity factors
depend only on their respective loads, and that they are indepen-
dent of the ceramic property.

4.2 Permeable or Conducting Crack: �0\�. On z=0, the
electric potential � may be set to null. This implies that

�
�=1

3

A�� = 0 �43�

Again by setting A�1=1, the other two eigenvectors follow from
Eqs. �22� and �43�, or more explicitly using the definitions of � in
Eqs. �15� and �16�

A�2 =
�− ��1

r 
1 + ��1
z � − �− ��3

r 
3 + ��3
z �

�− ��3
r 
3 + ��3

z � − �− ��2
r 
2 + ��2

z �
�44�

A�3 =
�− ��2

r 
2 + ��2
z � − �− ��1

r 
1 + ��1
z �

�− ��3
r 
3 + ��3

z � − �− ��2
r 
2 + ��2

z �
�45�

Since the mechanical boundary condition remains unchanged,
the solution is still given by Eq. �35�. As a consequence the stress
intensity factor KI is exactly the same as in the impermeable case
and depends only on the applied stress, �z

A. The electric displace-
ment intensity factor KD, on the other hand, is related to KI
through KD /KI=MD /M�, and the latter ratio is given in terms of
�� and A� which depend only on the ceramic property. As a
consequence KD is linearly proportional to KI and is independent
of the applied electric field Dz

A. Apparently for a fully permeable
crack, the electric displacement intensity factor is not caused by
the electric condition imposed on the boundary, but is induced by
the piezoelectric coupling of the ceramic.

After computing the MD /M� ratio for the four types of PZT
listed in Table 1, we find

PZT-4

KD = 0.25330 � 10−9�C/N�KI

PZT-5

KD = 0.30352 � 10−9�C/N�KI

PZT-5H

KD = 0.27906 � 10−9�C/N�KI �46�
PZT-7A

KD = 0.12819 � 10−9�C/N�KI

This linear connection between KD and KI is believed to be
valid not only for the penny-shaped crack but also for a 2D crack.
We will illustrate this point in the following example.

McMeeking �57� has conducted a theoretical study on the en-
ergy release rate of a crack in piezoelectric materials and provided
numerical results for a compact tension specimen having the ma-
terial properties of PZT-4. In Eq. �A16� of his paper, the energy
release rate of an impermeable crack for that particular configu-
ration was

G = 0.9884
KI

2

C33
+ 0.5505

KIKD

�C33�33

− 0.2391
KD

2

�33
�47�

To find the result for a conducting crack corresponding to the
same configuration, we may simply replace KD by 0.25330
�10−9�C /N�KI shown in Eq. �46�. After substituting the material
constants of PZT-4 into Eq. �47�, we find

G = 1.3052
KI

2

C33
�48�

An almost identical result was given in his Eq. �A8�. The differ-
ence in the last digit is believed to be due to the rounding error.

5 Dielectric Crack With a Finite Permittivity �0

Now we examine the general problem of a crack with finite
dielectric permittivity. Due to the coupling of the traction and
electric displacement on the crack surfaces, this problem is non-
linear. As a consequence we cannot decompose Q�s� into Q��s�
and QD�s�, and solve the mechanical and electric boundary-value
problems separately. This problem needs to be solved under the
simultaneous electromechanical boundary conditions.

First we note that the extra electric displacement on the crack
surface is given by

Dc = − �0
�

uz
= − �0

�
�=1

3

A��

�
�=1

3

Az�

�49�

Furthermore, from Eqs. �29� and �32�, we have

�z
A

M� =
Dz

A − Dc

MD �50�

On the plane z=0, �zr=0 and so Eq. �22� still holds. Thus for a
given �z

A and Dz
A, and using Eqs. �22� and �50�, we find that, after

some lengthy algebra, A�3 is the root of the following quadratic
equation

b2A�3
2 + b1A�3 + b0 = 0 �51�

with

b2 = − �0�n2 − n3��n2m3
� − n3m2

�� − Dz
A�n2��3

z − n3��2
z �

��n2m3
� − n3m2

�� + �z
A�n2��3

z − n3��2
z ��n2m3

D − n3m2
D�

Table 1 Material constants of PZT-4 from Park and Suna, PZT-5H from Pakb, and PZT-5 and PZT-7A from Dunn and Tayac

C11
�GPa�

C12
�GPa�

C13
�GPa�

C33
�GPa�

C44
�GPa�

e31

�C/m2�
e33

�C/m2�
e15

�C/m2�
�11

�10−9 C/V m�
�33

�10−9 C/V m�

PZT-4 139 77.8 74.3 113 25.6 −6.98 13.84 13.44 6 5.47
PZT-5 121 75.4 75.2 111 21.1 −5.4 15.8 12.3 8.11 7.35
PZT-5H 126 55 53 117 35.3 −6.5 23.3 17 15.1 13
PZT-7A 148 76.2 74.2 131 25.4 −2.1 9.5 9.2 4.07 2.08

aSee Ref. 8.
bSee Ref. 4.
cSee Ref. 58.
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b1 = − �0��n2 − n3��n2m1
� − n1m2

�� + �n2 − n1��n2m3
� − n3m2

���

− Dz
A��n2��3

z − n3��2
z ��n2m1

� − n1m2
�� + �n2��1

z − n1��2
z �

��n2m3
� − n3m2

��� + �z
A��n2��3

z − n3��2
z ��n2m1

D − n1m2
D�

+ �n2��1
z − n1��2

z ��n2m3
D − n3m2

D��

b0 = − �0�n2 − n1��n2m1
� − n1m2

�� − Dz
A�n2��1

z − n1��2
z �

��n2m1
� − n1m2

�� + �z
A�n2��1

z − n1��2
z ��n2m1

D − n1m2
D�

�52�

and

A�2 = −
n1

n2
−

n3

n2
A�3 �53�

These constants are seen to depend on the applied stress �z
A, ap-

plied electric displacement Dz
A, and the dielectric constant of the

crack medium �0. Since A�1=1 and Az�=���
z A��, all pertinent

quantities, such as M�, MD, and Dc �Dc=Dz
A−Dc�, can be deter-

mined.
The crack opening displacement and electric potential on z=0

then follow from

uz = − �
�=1

3

Az�

�z
A

2�M�
�a2 − r2, r � a

� = − �
�=1

3

A��

Dc

2�MD
�a2 − r2 r � a �54�

As the electric displacement intensity factor KD is given by

KD =
2

�
Dc��a �55�

it is evident that the relation

Dc

�z
A =

KD

KI
=

MD

M� �56�

holds for the dielectric crack. Since the ratio MD /M� depends on
�z

A, Dz
A, �0, and the ceramic property, both the effective electric

displacement Dc and the electric intensity factor KD are nonlinear
functions of these quantities.

Figure 1 illustrates the variation of the effective electric dis-
placement Dc as a function of the applied stress �z

A for PZT-4, by
taking the permittivity �0 as that of vacuum �i.e., �0=8.85
�10−12 C/V m�. It is seen that the effective Dc increases nonlin-
early with �z

A, and that the level of increase is further enhanced by
the applied Dz

A. Our calculations for the other three types of PZT
are found to exhibit similar characteristics. In light of Eq. �56�, the
nonlinear Dc versus �z

A relations displayed here also reflect the
nonlinear connection between KD and KI, and the ratio MD /M�

also serves as the “secant” modulus in the Dc versus �z
A plot.

Figure 2 is a schematic illustration on the influence of �0 to the
effective electric displacement Dc as the applied �z

A increases at a
given Dz

A. Here three different kinds of dielectric permittivity in-
side the crack: �0=0, →	, and finite, corresponding to the cases
of an impermeable crack, a conducting one, and one with a finite
permittivity, are chosen. It is seen that when �0=0, the traction
boundary condition has no influence on Dc, and Dc=Dz

A. When
�0→	, Dc is linearly proportional to �z

A and is in fact indepen-
dent of the applied Dz

A. The proportional constant depends on the
material properties of the ceramic. The one with a finite permit-
tivity exhibits the nonlinear response as shown in Fig. 1. A key
feature of this plot is that, regardless of the value of �0, all the
curves must pass through a critical point that is marked by
��c ,Dz

A�. This critical stress, �c, is the applied �z
A that will ensure

the condition of Dc=0 for a given �0. The existence of this
common critical state for a penny-shaped crack is attributed to the
relation Eq. �50�. That is, with this combination of ��c ,Dz

A�, any
value of �0 would not change the condition of Dc=0, and the
stress and electric displacement of the crack surfaces will be ex-
actly equal to the applied ones. This critical stress can be easily
calculated from the intersection of the two straight lines and can
be expressed as

�c = �M�

MD�
permeable

· Dz
A �57�

For the four types of PZT given in Table 1, they are

Fig. 1 The effective electric displacement, Dc, of the crack me-
dium versus the applied stress, �z

A, for PZT-4. The permittivity
�0 inside the crack was 8.85Ã10−12 C/V m.

Fig. 2 A schematic plot on the influence of permittivity, �0, of
the crack medium to the effective electric displacement, Dc,
versus the applied stress, �z

A relation. Regardless of the value
of �0 all the curves must pass through the critical state „�c ,Dz

A
….

When �z
A<�c, the responses of the impermeable and perme-

able cracks will serve as the upper and lower bounds, respec-
tively, and when �z

A>�c the situation is reversed. The response
of a dielectric crack with any �0 always lies within these
bounds.
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PZT-4

�c = 3.9479 � 109�N/C�Dz
A

PZT-5

�c = 3.2947 � 109�N/C�Dz
A

PZT-5H

�c = 3.5834 � 109�N/C�Dz
A �58�

PZT-7A

�c = 7.8012 � 109�N/C�Dz
A

These proportional constants are exactly the inverse of those in
Eq. �46�.

Since the electric displacement intensity factor is calculated
from Eq. �55�, we may further conclude that, when the applied
stress is below �c, KD of an impermeable crack will serve as the
upper bound and that of a permeable one will serve as the lower
bound of the dielectric crack. In fact, the lower the value of �0, the
higher the intensity KD. On the other hand when the applied stress
is greater than �c, the behavior is exactly reversed. The KD of a
crack with a finite permittivity always lies within these bounds.

This critical state ��c ,Dz
A�, provides a defining point at which

the relative characteristics of the dielectric crack with two differ-
ent dielectric permittivities are reversed. Its existence appears not
to have been reported in the literature.

More detailed quantitative results are illustrated in Fig. 3 for
PZT-4 under the condition of Dz

A=5�10−3 C/m2. The critical
stress �c here is 19.74 MPa. Four selected �0 values—ranging
from 10−15 C/V m to 10−9 C/V m—are used to compute the Dc

versus �z
A relations. It is seen that the result with �0

=10−9 C/V m is quite linear and thus such a crack may effec-
tively be treated as a fully permeable one, but that with �0
=10−15 C/V m still exhibits certain nonlinearity in the beginning
and thus is not exactly an impermeable case. The line with the
dielectric constant of vacuum, �0=8.85�10−12 C/V m, lies be-
tween those of the two middle curves, and it is evident that, even
with vacuum, a crack cannot be simply treated as an impermeable
�or a permeable� crack.

Finally we present the nonlinear response of the dielectric crack
when a negative electric displacement, Dz

A, is applied. The nonlin-
ear Dc versus �z

A relations of the dielectric crack with different �0

values are schematically shown in Fig. 4. In this case the critical
state ��c ,Dz

A� does not depend on the properties of the ceramic,
and it can only exist at the origin. All the Dc versus �z

A curves are
bounded from above by the permeable crack and below by the
impermeable one. Furthermore, there exists a transition permittiv-
ity �* inside the crack that separates, the nonlinear relations from
an increase to a decrease of the Dc field as the applied stress �z

A

increases. At this transition �*, the effective electric displacement
Dc is always zero, independent of �z

A. Its value is a function of the
material constants of the ceramic, and it depends linearly on the
applied Dz

A, as

�* = − RDz
A �59�

where the proportional constant R for the four ceramics listed in
Table 1 are found to be

PZT-4

R = 0.78996 � 10−9 m/V

PZT-5

R = 0.98107 � 10−9 m/V

PZT-5H

R = 1.2575 � 10−9 m/V

PZT-7A

R = 0.65419 � 10−9 m/V �60�

For a PZT-4 under the negative electric displacement Dz
A=−5

�10−3 C/m2, the transition permittivity is �*=3.95
�10−12 C/V m. The corresponding nonlinear relations with four
selected �0 values are shown in Fig. 5. The horizontal axis then
serves as the demarcation line for the response of these two
groups of dielectric crack whose permittivity is greater or smaller
than this critical value.

Relation �59� in retrospect can be used to find the level of
“transition” electric load D* for a given dielectric permittivity �0,
as

D* = − �0/R �61�

When �Dz
A�� �D*�, the induced Dc will still remain positive be-

cause the applied stress still dominates the field; only when �Dz
A�

� �D*�, will Dc become negative like Dz
A. For a dielectric crack

with the permittivity of vacuum ��0=8.85�10−12 C/V m� in a

Fig. 3 A quantitative assessment for PZT-4 on the influence of
permittivity �0 of the crack medium to the effective electric dis-
placement, Dc, versus the applied stress, �z

A relation. The result
with vacuum „�0=8.85Ã10−12 C/V m…, lying between those of
�0=10−12 C/V m and 10−11 C/V m, is seen to be far away from
those of the permeable and impermeable cracks.

Fig. 4 A schematic plot on the influence of permittivity, �0, of
the crack medium to the effective electric displacement, Dc,
versus the applied stress, �z

A, relation under a negative Dz
A. The

critical „�c ,Dz
A
… state in this case only exists at the origin. There

exists a critical �* for �0, beyond which Dc will remain positive
in spite of the negative Dz

A.
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PZT-4, we have D*=−11.2�10−3 C/m2. Such a phenomenon can
be seen in Fig. 6.

6 Concluding Remarks
By means of the Hankel transform and dual-integral equations,

the problem of a penny-shaped dielectric crack in a transversely
isotropic piezoelectric medium is solved explicitly. In addition to
some well-known results for the intensity factors of impermeable
and permeable cracks, our solutions have vividly displayed the
nonlinear characteristics of a dielectric crack under a tensile stress
and axial electric field. The general results can be cast in the
universal relation, as

Dc

�z
A =

KD

KI
=

MD

M� �62�

regardless of the electric boundary conditions. For an imperme-
able crack the ratio MD /M� is equal to Dz

A /�z
A. For a conductive

crack this ratio is a function of the material property of the ce-
ramic only, independent of either Dz

A or �z
A. For a general dielec-

tric crack with a finite permittivity �0, this ratio depends on the
material property of the ceramic, dielectric constant of the crack
medium �0, and the applied Dz

A and �z
A. The latter dependence

makes the response of the crack medium nonlinear.

We have demonstrated the nonlinear characteristics of the di-
electric crack response by showing the nonlinear growth of Dc as
a function of �z

A. The growth is monotonically enhanced by a
positive Dz

A. The nonlinear dependence of Dc on �z
A is found to be

closely controlled by a critical state ��c ,Dz
A�, through which every

single curve passes regardless of the dielectric constant �0. When
�z

A is lower than �c, the Dc of the impermeable crack provides the
upper bound and that of the permeable crack provides the lower
bound. When �z

A is greater than �c, the situation is exactly re-
versed. The nonlinear response of the dielectric crack always lies
within these bounds, and it undergoes a transition as �z

A passes
through �c. Due to relation �62�, the relation between KD and KI
also exhibits similar transition as the applied stress passes through
the critical state. This critical stress depends only on the material
constants of the ceramic and is independent of the dielectric per-
mittivity �0 of the crack medium.

When the applied electric displacement Dz
A is negative, the

critical state ��c ,Dz
A� can only exist at the origin. In this case there

exists a critical dielectric constant �* that is linearly proportional
to Dz

A in the form of �*=−RDz
A, where the proportional constant R

depends only on the property of the ceramic. For a dielectric crack
whose �0 is greater than �*, its effective electric displacement Dc

will continue to be positive due to the greater influence of the
tensile stress, but for a crack medium whose �0 is lower than �*,
its Dc will be subjected to a greater influence by Dz

A and turns into
the negative range. The values of all these curves, however, al-
ways lie between those of the permeable and impermeable ones
that also serve as the upper and lower bounds, respectively.

Under a negative Dz
A, the response of a dielectric crack with a

given �0 also depends on a critical electric displacement D*. This
critical D* is given by D*=−�0 /R. When the negative applied
load Dz

A has a lower magnitude than that of D*, the effective
electric displacement Dc will still be positive but, when it is
greater, the Dc of the crack medium will also turn negative.

We have thus demonstrated the nonlinear nature of the crack
response, and identified several key critical states that have sig-
nificant implications on the nonlinear response and the electric
intensity factor of the dielectric crack.
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Designing Optimal Volume
Fractions For Functionally Graded
Materials With Temperature-
Dependent Material Properties
We present a numerical approach for material optimization of metal-ceramic functionally
graded materials (FGMs) with temperature-dependent material properties. We solve the
non-linear heterogeneous thermoelasticity equations in 2D under plane strain conditions
and consider examples in which the material composition varies along the radial direc-
tion of a hollow cylinder under thermomechanical loading. A space of shape-preserving
splines is used to search for the optimal volume fraction function which minimizes
stresses or minimizes mass under stress constraints. The control points (design variables)
that define the volume fraction spline function are independent of the grid used in the
numerical solution of the thermoelastic problem. We introduce new temperature-
dependent objective functions and constraints. The rule of mixture and the modified
Mori-Tanaka with the fuzzy inference scheme are used to compute effective properties for
the material mixtures. The different micromechanics models lead to optimal solutions that
are similar qualitatively. To compute the temperature-dependent critical stresses for the
mixture, we use, for lack of experimental data, the rule-of-mixture. When a scalar stress
measure is minimized, we obtain optimal volume fraction functions that feature multiple
graded regions alternating with non-graded layers, or even non-monotonic profiles. The
dominant factor for the existence of such local minimizers is the non-linear dependence
of the critical stresses of the ceramic component on temperature. These results show that,
in certain cases, using power-law type functions to represent the material gradation in
FGMs is too restrictive. �DOI: 10.1115/1.2712231�

1 Introduction

1.1 Literature Review. Inspired by some naturally occurring
material systems such as bamboo, bone, sea shells, teeth, func-
tionally graded materials �FGMs� are heterogeneous materials fea-
turing a smooth material composition gradation for achieving a
specific function. Most commonly, metal-ceramic FGMs are used
to make the transition from a metal part, which is strong but
cannot operate at high temperatures, and a ceramic part, which is
efficient in shielding against high temperatures but has low tensile
strength. The smooth gradation in space of the volume fraction of
one constituent reduces the stress concentrations or jumps, mini-
mizing, therefore, the likelihood of material failure. Some current
and potential applications include thermal protective shields of
high reliability, thin films and coatings for cutting tools, and den-
tal and prosthetic implants, to name just a few. Note that here we
consider materials in which the microstructure scale is such that
homogenization can be applied. The limitations and validity of
micromechanics-based homogenization schemes for FGMs under
thermal cycling conditions are analyzed in Pindera et al. �1�, for
example.

In most studies found in the literature, the defining parameter of
a FGM is the function giving the volume fraction spatial variation
for one of the two constituents. Other types of parameters can also
be selected for describing the FGM, such as Young’s modulus E
and thermal expansion coefficient � as is done in, for example,
�2,3�, or �4�. In such cases, however, one has to solve an addi-
tional inverse problem to determine the corresponding volume
fraction function, which is more relevant from a manufacturing

point of view. Such an inverse problem may be even more com-
plicated by temperature-dependent material properties, and in fact,
its solution might not even exist. Moreover, as noted in �5�, it may
not always be possible to impose the effective thermal expansion
coefficient and Young’s modulus independent from each other.

Among the publications, theoretical and numerical, which ana-
lyze the thermomechanical behavior of FGMs, a common feature
is the selection of a power-law type function �xp , p�R� for the
volume fraction �or other material parameters�. Here, x is a coor-
dinate along which the material gradation takes places from one
side �at x=0� of the material to the other �at x=1�. The monotonic
power law is selected only as a matter of convenience since ana-
lytical results are difficult, if not impossible, to obtain otherwise.
On the other hand, such a gradation offers a large selection of
possible gradations for FGMs �see Fig. 1�. We stress, however,
that the power-law function is unable to represent, for example,
non-monotonic volume fraction variations.

One material optimization problem that can be defined for
FGMs is to determine the optimal function for the material gra-
dation in order to minimize, for example, thermal stresses in the
FGM. Previous material optimization studies of FGMs under ther-
momechanical loadings �6–11� limit their design space to that of
power-law type or monotonic functions. In Tanaka et al. �10�, for
example, the radial distribution volume fraction function is sought
in a space of monotonoic functions of a certain type: their first
derivative is a positive “wedge” function. The design variables in
this case are the locations of the start, tip, and end of the piece-
wise linear “wedge”-like derivative. The objective is to minimize
the maximum departure of the circumferential stress �which, for
the examples we consider here, is significantly larger than the
other stress components in the hollow cylinder structure� from a
given reference stress distribution under transient heat-conduction
conditions. Effective material properties are obtained with the
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Mori-Tanaka �M-T� theory in regions where one of the constitu-
ents is dilute �metal-rich or ceramic-rich�, and these approxima-
tions are linked between them by a “fuzzy inference” method. The
temperature dependence of the material properties is not consid-
ered. Limiting bounds are used for the design variables to pre-
serve toughness and stress constraints are also considered for
keeping the circumferential stresses inside a region bounded by
the temperature-independent critical stresses. No indication is
given as to the meaning and origin of the critical stresses.

A different critical stress criterion from that used in �10� is
proposed by Cho and Choi �12�, where the objective function is to
minimize the ratio of the peak effective stress and the yield stress.
Both these quantities are functions of position in �12� but the
temperature dependence is not considered in the problem of find-
ing the optimum material gradation for maximizing the yield
strength against residual stresses. The 2D analysis in �12� looks at
the material starting at uniform temperature and being cooled
down to a lower, uniform, temperature. This situation would not
correspond to expected working conditions of the FGM structure,
but rather to natural cooling encountered in the manufacturing
process.

Genetic algorithms are used in �13� to optimize the volume
fraction distribution in 2D FGMs. Temperature-dependent proper-
ties are not used and thus extra temperature constraints are en-
forced in order to avoid reaching designs in which the metal com-
ponent yields. Convergence of the genetic algorithms is obtained
after a few hundred generations.

Lipton �14� considers the optimal design of functionally graded
shafts subject to purely mechanical loading �torsion�. The homog-
enization theory for periodic microstructures is used and micros-
tresses are included in the formulation. The coupled microstress is
shown to account for less than 10% of the total stress. The analy-
sis is limited, however, to FGMs in which one component is
dominant �in terms of volume fraction�, so the “fiber” and the
“matrix” cannot switch roles. The validity range of homogeniza-
tion methods for FGMs in the context of transient thermal load-
ings is analyzed in �1� with the use of a high-order method.

An interesting optimal volume fraction variation is found by
Boussaa �15�, who gives an example of a material optimization
for a hollow cylinder FGM �under thermomechanical loadings�
where the solution is monotonic but discontinuous. In �15� the
thicknesses of the homogeneous metal and ceramic coatings and
that of the FGM interlayer in the hollow cylinder are fixed, non-

designable parameters. The temperature dependence of the mate-
rial parameters is neglected and the cost function is selected to be
the maximum circumferential stress across the ceramic coating
and the graded interlayer. No constraints are used and the thermo-
mechanical effective properties are computed via self-consistent
schemes. The result in �15� shows the important role played by the
cost function selection on the optimal volume fraction profile.

The minimum structural compliance problem for FGMs under
thermomechanical loading is addressed in �16�. The strong influ-
ence of the choice of the material gradation on the response of the
FGM under impact loading is noticed �17�. The effect of consid-
ering temperature-dependent material properties on the stress in-
tensity factors and the energy release rate for an edge crack in an
FGM is investigated in �3�. Important developments regarding
isothermal fracture in FGMs are found in, for example, Kim and
Paulino �18� and references therein.

Generally, the numerical methods used for the analysis of the
mechanical and thermomechanical behavior of FGMs are the fi-
nite element method �8–10,19–21�, the boundary element method
�22,23� and meshfree methods �24–26�.

A review article on thermal stresses in FGMs is presented in
�27�. The focus in �27� is on transient thermoelasticity and the
reduction of thermal stresses and the stress intensity factors in
FGMs by changing the continuously graded composition of the
material. The importance of considering temperature-dependent
properties in thermal fracture of ceramics has been discussed in
Jin and Batra �28�, while �29� show the influence of using
temperature-dependent material properties when modeling ther-
mal post-buckling of FGM plates.

Two main issues do not seem to have been addressed in the
literature on optimal material design of FGMs:

• allowing unrestricted volume fraction variations in the de-
sign space;

• considering temperature-dependent material properties and
temperature-dependent objective function and constraints.

1.2 Our Contributions. The focus of the present paper is to
analyze, using numerical models, the existence of optimal non-
monotonic volume fraction functions in metal-ceramic FGMs that
cannot be approximated by power-law type profiles. In our analy-
sis we do not impose any predefined shape for the volume fraction
function of one of the FGM’s components. For the continuous
volume fraction representation we use a design space of shape-
preserving cubic splines �see Sec. 2.4�, which interpolate a set of
control points �the design variables shown in Fig. 2�. The design
variables determine the “shape” of the optimal volume fraction
function, and their number �density� controls the spline’s ability to
approximate any continuous profile in the given interval. The op-

Fig. 1 Various realizations of material gradations as given by
the power law xp for different values of the parameter p. The
types of volume fraction variations is rather limited; for in-
stance, non-monotonic variations are excluded.

Fig. 2 Schematic representation for a possible continuous,
non-monotonic volume fraction function along the radial direc-
tion of the hollow cylinder in Fig. 3, and sample design vari-
ables „y1 , . . . ,y5… that control its profile. The end points may
also serve as design variables.
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timization, however, is one of material, not of shape. While
searching in a space of smooth functions, discontinuous solutions
may be indicated by sudden changes in the shape-preserving
spline.

We consider the weakly coupled thermoelasticity equations for
heterogeneous materials �for the type of problems considered
here, only the temperature influence on the mechanical response is
needed�. We use temperature-dependent material properties, and
this leads to non-linear heat-transfer equations. In the specific ex-
amples we treat, the temperature-dependence of the conductivity
parameter is, however, only weakly non-linear. To our knowledge,
the present study seems to be the first one focusing on optimal
material design of FGMs with temperature-dependent material
parameters.

We formulate and solve the heterogeneous thermoelastic prob-
lem using the element-free Galerkin method �EFG� originally pro-
posed by Belytschko et al. �30� for elasticity. We impose the Di-
richlet boundary conditions with the “transformation matrix”
method �31� for the thermal problem, and with the penalty method
for the thermoelastic equations. The choice of a meshfree method
for the analysis problem is here more a matter of convenience.
The advantage compared to, for example, the finite element
method �FEM�, consists of a better resolution of the volume frac-
tion function with the same number of discretization nodes. This
is possible since the volume fraction variation is captured at the
integration points of the background cells, which, in the EFG
method, are independent from the discretization nodes. We use
5�5 quad integration cells that have nodes at their ends �see �32�
for motivation of this selection�. If one would use the FEM and
tried to achieve the same resolution of the integration points, one
would need many more nodes than used in the EFG solution.
Consequently, the problem size would increase significantly. Our
future plans are to combine material and shape optimization, and
we have shown elsewhere �33� that meshfree methods have great
advantages in shape optimization problems compared to the FEM,
for example.

The EFG formulation for homogeneous linear thermoelasticity
is given in Bobaru and Mukherjee �34�. In the present formula-
tion, the material parameters depend on position �heterogeneous
material� and temperature, and the heat-transfer part of the ther-
moelastic equations is non-linear. We compute the effective prop-
erties of the heterogeneous material with the simple rule of mix-
ture �ROM� and with a combined Mori-Tanaka/fuzzy inference
scheme �10�. Other micromechanics-based models can be used as
well with our formulation, such as those developed by Reiter and
Dvorak �35� that combine the Mori-Tanaka scheme with the self-
consistent method.

We introduce new objective function and constraints based on
temperature-dependent “effective” critical stresses for the FGM,
computed from the yield stress for the metal phase, the critical
strength for the ceramic component, and the rule of mixture. The
strong dependence of the critical stresses on temperature domi-
nates the optimal volume fraction solution, especially since the
yield stress of the metal component drops very fast at high tem-
peratures and the variation of the critical tensile strength of the
ceramic is highly non-linear.

The paper is organized as follows: in the following section we
describe the material optimization problem and give the EFG for-
mulation and discretization for the thermoelastic problem for 2D
heterogeneous solids with temperature-dependent material proper-
ties. To determine a sufficiently dense grid for an accurate solu-
tion, in Sec. 3 we compare the 2D EFG solution for the axisym-
metric heat-transfer problem in a hollow FGM cylinder with the
analytical solution for the case of a linearly varying �with the
radial coordinate� temperature-independent conductivity. In the
rest of the paper, temperature-dependent material properties are
used. In Sec. 4 we define two material optimization problems for
a functionally graded hollow cylinder subject to thermomechani-
cal loads in plane strain conditions: a mass minimization under

stress constraints and a stress minimization problem. We present
the numerical results for the two optimization problems in Sec.
4.2. In these examples, a radially dependent volume fraction func-
tion is designed since we try to see if imposed forms on the
volume fraction functions �like the power-law profiles� used in
many previous studies are too restrictive or not. A two-
dimensional, �r ,�� surface type variation of the volume fraction
can be easily used if desired without any modifications to the
solution method proposed here. We present conclusions in Sec. 5.

2 Problem Description

2.1 Material Optimization Problem Setup. In two-phase
composite FGMs, the material composition is defined by the vol-
ume fraction function taking values between 0 and 1. We define
the optimal volume fraction function as the solution to the func-
tional minimization problem

minimize F�y�x��

subject to G�y�x�� � 0

0 � y�x� � 1 �1�

where y=y�x� is the volume fraction function, while the objective
function F and the constraint G are, for example, measures of
mass, scalar measures of stresses, etc. and thus can be computed
by solving the heterogeneous thermoelastic problem described in
the next sections. To be able to assess the validity of imposing
specific shapes for the volume fraction function, we will assume
that this function depends on one spatial coordinate: the radial
direction for the optimal material design of a functionally graded
hollow cylinder. Methods of non-linear programming �36� can be
used for approximating the solution of the optimization problem
above if we reduce it to an optimization problem in a finite-
dimensional space. We do this by using interpolating shape-
preserving cubic splines �Akima splines� whose shapes are de-
fined by a set of points �material design variables� like those
shown in Fig. 2. By increasing the number of design variables, we
approach the solution of the infinite-dimensional optimization
problem �1�.

2.2 Temperature-Dependent Thermoelasticity. We consider
a domain � that is occupied by the FGM under thermomechanical
loading. The non-linear heat-transfer equations and the equations
of the thermoelastic equilibrium can be written as in Eqs. �2� and
�3� below

�
� · ���x,T� � T� + Q�x,T� = 0 in �

T = T0 on �0
T

��x,T� � T · n = q̄ on �1
T

��x,T� � T · n + h�x,T��T − T	� = 0 on �2
T
� �2�

where T is the unknown temperature field over the cross-sectional
domain �, T0 is the given temperature on the �0

T, q̄ is the imposed
heat-flux density on �1

T, while T	 is the given ambient temperature
over the convective boundary �2

T. In addition, ��x ,T� is the heat
conduction coefficient, h�x ,T� the convective heat transfer coeffi-
cient, and Q the internal heat source. We assume here that the
material is thermally isotropic. The exterior normal to a boundary
is denoted by n. The dot �·� in the above equations denotes the
scalar �or dot� product between tensors of rank 1. In the examples
shown in Sec. 4, only temperature and flux boundary conditions
are used and the internal heat source is zero. Once the temperature
field is solved for from Eq. �2�, the thermoelasticity equations for
heterogeneous materials give the displacements, stresses, and
strains as follows
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�� · 
�x,T� + b�x,T� = 0 in �


�x,T�n = t̄�x,T� on �t

u�x,T� = ū�x,T� on �u
� �3�

where


 = C�x,T�:���x,T� − ��x,T�T�x�I� �4�

with 
, �, and u representing the stress tensor, strain tensor, and
displacement field, respectively; C is the heterogeneous elasticity
fourth-order tensor, I is the second-order identity tensor, and � is
the coefficient of thermal expansion that depends on the position
and temperature. Body forces are indicated by b, while given
tractions t̄ are applied over a portion �t of the boundary of �. The
imposed displacements over �u are ū.

The heat-transfer problem in Eq. �2� is non-linear since the
conductivity depends on the temperature. For the examples we
consider, the conductivity dependence on temperature is weakly
non-linear �see data in Tables 4 and 5 in Appendix A�. We linear-
ize the problem with a “fixed-point” type iterative scheme. As-
sume that at iteration k we have solved for the temperature field Tk
over the domain �. The solution for the temperature field Tk+1 at
the next iteration is then given by the solution to the following
linear boundary value problem

�
� · ���x,Tk� � Tk+1� + Q�x,Tk� = 0 in �

Tk+1 = T0 on �0
T

��x,Tk� � Tk+1 · n = q̄ on �1
T

��x,Tk� � Tk+1 · n = h�x,Tk��Tk+1 − T	� on �2
T
� �5�

The iterations continue until the relative error between the solu-
tion vector �which contains the approximate solution at nodes
along the radial direction� at the current and previous iteration
�Tk+1−Tk � / �Tk � �, with � a preset tolerance. We use norm-2

here ��v � =�v1
2+ ¯ +vn

2�. The solution converges in only a few
iterations for the example of the hollow cylinder shown in Sec. 4
and for a tolerance of �=10−6. The starting guess for the iterations
is defined as a linear interpolation, along the radial direction of the
hollow cylinder, of the imposed boundary temperatures at the in-
ner and outer surfaces of the cylinder.

2.3 Meshfree Solution of the Thermoelastic Problem for
the Temperature-Dependent Heterogeneous Materials. The
meshfree solution for the non-linear thermal problem amounts to
solving a set of linear systems that are formed by discretizing the
weak forms corresponding to the equations in �5�

	
�

��x,Tk� � Tk+1 · �� d� −	
�1

T
q̄� d� +	

�2
T

h�x,Tk�Tk+1� d�

−	
�2

T
h�x,Tk�T	� d� = 0 for any � � V �6�

where ��V= 
��H1��� ,�=0 on �T
0 —in the sense of trace� are

the test functions.
The element-free Galerkin �EFG� discretization of Eq. �6� leads

to the following linear system of equations

M�Tk�Tk+1 = f�Tk� �7�

where the global matrix M�Tk� and the right-hand side vector
f�Tk� are defined by

M�Tk� =	
�

��x,Tk��−1BTB�−Td� +	
�2

T
h�x,Tk���−1��

� ��−1��d� �8�

f�Tk� =	
�

Q�−1� d� +	
�1

T
q̄�−1� d� +	

�2
T

h�x,Tk�T	�−1� d�

�9�

The symbol � above stands for the exterior �tensor� product. The
matrix B above is used to approximate the gradient in the

N-dimensional discretization space as ���N�=B�̂ and is given by

B = �
��1

�x1
¯

��N

�x1

��1

�x2
¯

��N

�x2

 with � = ��1

]

�N
, � = ��1

]

�N
 �10�

where �i are the moving-least-squares approximation functions.
The matrix � in Eq. �8� is accounting for imposing the geometric
�or essential� boundary conditions via a transformation method
�31,37�. The transformation of the shape functions is necessary in
the EFG method since the shape functions do not satisfy the Kro-
necker delta property. Other methods for imposing the geometric
boundary conditions are available and a review of these methods
is presented in �38�. The temperature values the nodes, i.e., � j
=��xj�, j=1, . . . ,N, are expressed in terms of some “fictitious”
temperatures as

� j = ��xj� = �
i

�i�xj��i
ˆ = �

i

�ij�i
ˆ = ��T�̂� j �11�

�̂ = �−T�, �̂ = �−T� �12�

where �i
ˆ are the “fictitious” nodal temperature values, and �ij

=�i�xj� is the transformation matrix.
The weak form for the heterogeneous thermoelastic Eqs. �3�

and �4� is

	
�

C�x,T�:��u� · ����d� + �	
�u

u · � d� =	
�

b�x,T� · � d�

+	
�t

t̄ · � d� − �	
�u

ū · � d� +	
�

��x,T�T div � d�

−	
�u

��x,T�Tn · � d� for any � � �H1����2, �13�

where ��u� is the symmetric part of �u. In the examples with a
hollow cylinder that follow, we will use plane strain conditions for
which ��x ,T�=��x ,T�E�x ,T� / �1−2��x ,T�� and

C�x,T� =
E�x,T�

�1 + ���1 − 2���
1 − � � 0

� 1 − � 0

0 0
1 − 2�

2
 �plane strain� .

Notice that in the computer implementation, we use the customary
engineering vector notation for the strain tensor, namely

� = ��11,�22,2�12 = �12�

which leads to the above matrix form of C�x ,T�.
We use a penalty parameter � between 107�E to 109�E to

impose the displacement boundary conditions, and this avoids ill-
conditioning. For the examples considered here, the transforma-
tion method with inversion of the full matrix described above for
the thermal problem is about 50% slower than the penalty method
in the case of the thermoelastic weak form. One could use the
transformation method with the inversion of the reduced matrix as
explained in �31�, but the simplicity of the implementation is then
lost. This weak form is discretized using the EFG approximation
functions. In �34�, this is done for the homogeneous material case.
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Here we have to include both the spatial and the temperature
dependence of material parameters. Computing the material prop-
erties for the heterogeneous case is described in the next section.

2.4 Computing Effective Material Properties for the
Composite. For the numerical approximation of domain and
boundary integrals in �6� and �13� we use Gaussian integration.
For domain integrals we employ background quad cells with 5
�5 Gauss points. For simplicity, the integration cells are defined
by the discretization nodes. All material parameters for the metal-
ceramic composite �ZrO2 and Ti-6Al-4V� have to be evaluated at
the integration points and the data in tables in Appendix A is used
as follows:

• At a radial location r of the hollow cylinder cross section,
where the volume fraction of metal is y�r�, we evaluate the
“composite” material parameters via the ROM scheme or
the combined Mori-Tanaka/fuzzy inference method. For the
latter, the Mori-Tanaka method is used over metal- or
ceramic-rich regions, while the fuzzy inference method �see
Appendix B� connects these regions over the areas where
the inclusions and the matrix cannot be easily separated.
Other schemes for determining effective properties �35,39�
can easily be used with the present formulation.

• Since the micromechanics models require data at tempera-
tures other than those in Appendix A, we use the Akima
shape-preserving spline to interpolate the data and to evalu-
ate material properties at any given temperature.

• The continuous volume fraction function profile that defines
the FGM is approximated by an Akima spline controlled by
a set of design variables �see Fig. 2�. While the oscillations
of cubic spline interpolation are reduced in the Akima spline
interpolation, some portions of the Akima spline may still
exit the physical domain allowed for the volume fraction
function: the interval �0,1�. In such cases, instead of using
the Akima spline s�r� we use the modified continuous func-
tion ŝ�r� defined below

� ŝ�r� = s�r�
where s�r�  0, set ŝ�r� = 0

where s�r� � 1, set ŝ�r� = 1
� �14�

If the control points �design variables� at the ends of the
spline are collinear, then the end-condition quadratic of the
Akima spline becomes linear �40� and no parts of the spline
fall below 0 or above 1. The design variables are indepen-
dent of the 2D grid nodes used for the solution of the ther-
moelastic problem. We could also select independent design
variables in the � direction of the hollow cylinder, thus de-
fining a surface for controlling the material variation in the
FGM.

An important advantage of the meshfree solution when com-
pared to a FEM solution is that the Gauss integration points are
independent from the approximation nodes. As the values of the
volume fraction function are evaluated at these integration points,
one can accurately capture the variations in this function without
requiring a large number of discretization nodes. If one uses the
FEM and tries to achieve the same resolution of the integration
points as in the 5�5 integration points per integration cell used in
this work, one needs a much larger number of nodes than the EFG
solution. Consequently, the size of the equivalent FEM problem
increases significantly compared to the EFG solution. For a study
of the efficiency of various integration schemes in EFG see, for
example, �32�.

3 A Convergence Test
The examples we analyze in Sec. 4 are for the 2D cross section

of a hollow cylinder subject to a high temperature gradient and
boundary conditions as shown in Fig. 3. We perform a conver-

gence test in order to determine a sufficiently dense grid for an
accurate solution of the thermoelastic problem. The analytical so-
lution for the linear heat transfer with a linearly varying thermal
conductivity can be found. We compare this analytical solution
with the numerical temperature field distributions of a functionally
graded hollow cylinder for which the material properties vary
along the radial direction. We consider 100% ceramic material at
the inner surface and pure metal at the outer surface of the hollow
cylinder. Assume that the ceramic side is at temperature T1 �high�
and the metal surface at temperature T2 �low�. The steady state
equation of the one-dimensional heat transfer, with temperature-
independent conductivity, can be expressed as the boundary-value
problem

1

r

d

dr
���r�r

dT

dr
� = 0

with boundary conditions

�T�r��r=r1
= T1 �T�r��r=r2

= T2

Here, ��r� is the thermal conductivity of the given FGM. The
general solution to this equation is given by

T�r� = A	
r1

r
1

r��r�
dr + B �15�

The coefficients A and B are obtained by applying the boundary
conditions, as follows

A = �T1 − T2��	
r1

r2 1

r��r�
dr�−1

B = T2

Assuming that the thermal conductivity varies linearly with re-
spect to the position r, ��r�=a+br, where a and b are dimension-
ally corresponding constants, the temperature field solution
becomes

T�r� = T2 + �T1 − T2��ln
r

a + br
− ln

r1

a + br1
��ln

r2

a + br2

− ln
r1

a + br1
�−1

�16�

We check this analytical solution against the 2D solution using
the EFG method described above. The 2D numerical solution de-
veloped here can be used for the case of material variation in the
angular direction as well, and in which the sought-after volume
fraction is a surface instead of a curve. We consider, in consistent
units, r1=0.7, r2=1, T1=800, T2=0, a=−8.733, and b=15.333.
The values for a and b are so chosen as to match the conductivity
of ceramic ��=2� at r=r1 and that of metal at r=r2 ��=6�. For

Fig. 3 Boundary conditions for the hollow cylinder under ther-
momechanical loading: temperature values imposed on the in-
ner „Tint… and outer „Text… surfaces, inner pressure „t̄…, and sym-
metry conditions for the thermal flux and displacements

Journal of Applied Mechanics SEPTEMBER 2007, Vol. 74 / 865

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



this convergence test we ignore the temperature-dependence of
the thermal conductivity. We use grids of 9�41, 17�61, and
29�81 nodes in the radial and angular directions, respectively.
The quads naturally formed by the nodes are selected, for conve-
nience, as background integration cells in the meshfree solution.
We employ 5�5 Gaussian integration in each cell. A linear basis
is used for computing the moving-least-squares approximation
�41�. The numerical results we plot in Fig. 4 are for points along
the 45 deg direction and we use dimensionless quantities as fol-
lows:

r* =
r − r1

r2 − r1
, T* =

T

T1 − T2
, � T* = �T

r2 − r1

T1 − T2
�17�

In Fig. 4 we give the temperature and the temperature gradient
for the three grids together with the analytical solutions. The small
error present at the end point in the gradient values are due to
post-processing: for end points we use the forward or backward
finite difference �first-order accuracy� to compute the gradient val-
ues, whereas the gradient at the interior is computed using the
central difference method �second-order accuracy�. The relative
error in norm 2 �see Sec. 2.2� for the temperature gradient drops

from 0.0674, to 0.0335, to 0.0239 for the three different grids,
respectively. We select the 29�81 discretization for all the sub-
sequent numerical tests.

4 Material Optimization Example Problems

4.1 Computing Effective Critical Stresses. We define criti-
cal stress measures to employ as the material optimization objec-
tive function and constraints. Since no experimental values are
available for various metal-ceramic functionally graded mixtures
at various temperatures, we evaluate the composite “critical” ten-
sile and compressive stresses in the FGM using the temperature-
dependent yield stress of the metal component and critical
strength of the ceramic, together with the simple ROM. If experi-
mental values for critical stresses in FGMs become available for
arbitrary volume fractions and the range of temperatures that we
cover in this study, the present formulation can easily integrate
them. It is worthwhile to note that, in the purely mechanical prob-
lem of optimal design of graded composites with predetermined
matrix and fiber components �14� that cannot change roles, where
a more accurate homogenization technique is used to account for
the stresses due to the microstructure, the microstresses account
for no more than 10% of the total stress.

Let 
m�T� and 
c�T� be, respectively, the critical tensile �or
compressive� yield stress for the homogeneous metal and the ten-
sile �or compressive� strength for the homogeneous ceramic ma-
terial at a given temperature T �see Tables 4 and 5 in Appendix A,
and also note the strong dependence on temperature of the yield
and critical stresses�. The estimated effective critical tensile �or
compressive� stress in the FGM at a location where the volume
�area� fraction of the metal is y�r� will then be given by


�r,T� = 
m�T�y�r� + 
c�T��1 − y�r�� �18�
This critical tensile �or compressive� stress is used to define an

objective function and/or constraint in the next section.

4.2 Optimization of Volume Fraction Function. We define
two non-linear optimization problems: find the best continuous
metal volume fraction function in the space of Akima splines con-
trolled by the set of p equally spaced points in the radial direction
�r1 ,y1� , . . . , �rp ,yp�, which

�1� minimizes mass under critical stress violation constraints
�2� minimizes a critical stress violation measure

4.2.1 Problem 1: Mass Minimization Under Stress Violation
Constraints. The non-linear optimization problem in this case
reads

minimize F�y� = m�y�

subject to G�y� = 1 − max�v�r,T,y�� � 0

0 � y � 1 �19�

where the design variable �DV� vector y= �y1 , . . . ,yp� represents
the heights of the control points for the volume fraction shape-
preserving spline �see Fig. 2� and the objective function is the
mass m of the 2D cross section calculated using the variable local
density, which is determined by the volume fraction function. The
stress violation constraint G�y��0 is based on a local stress mea-
sure. The function v below gives the violation of the critical ef-
fective stress in the composite computed along a radial direction

Fig. 4 Analytical and numerical results for the temperature „a…
and temperature gradient „b… along the radial direction of a hol-
low FGM cylinder under temperature-imposed boundary condi-
tions. Dimensionless quantities are as in Eq. „17….
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�if 
��r,T,y� � 0 then v�r,T,y� =

��r,T,y�

�
tc�r,T,y�
otherwise

v�r,T,y� =
�
��r,T,y��

��
cc�r,T,y��
.� �20�

In the above equation, 
tc�r ,T ,y� and 
cc�r ,T ,y� are the critical
effective stresses in tension and compression, respectively, com-
puted via Eq. �18�. We emphasize that these critical effective
stresses are very strongly dependent on temperatures, as seen from
the strongly nonlinear dependence of the metal and ceramic criti-
cal stresses given in Tables 4 and 5. The factor � is a safety factor
selected to be 0.8 in what follows. We use the safety factor since
the SQP nonlinear optimization algorithm �36� we employ to
solve does not require iterates to be feasible. Consequently, “op-
timal” solutions with small violation of the constraints are pos-
sible, but this is undesirable from a design point of view. The
safety factor value we use insures that minimizers that violate the
constraint by less than 10−1 do not result in stresses larger than the
critical composite stress at the corresponding temperature and po-
sition. In this study we use the dnconf routine from the IMSL
library, which finds sensitivities internally by finite difference
approximations.

4.2.2 Numerical Results for Problem 1. The boundary condi-
tions are �see Fig. 3�: on the boundary �0

T �r=0.7 and r=1� Text
−Tint=800°C, with Tint=0, while zero-flux conditions are im-
posed on the �1

T boundary ��=0 and �=� /2�. An inner pressure
�t̄�=100 MPa is also imposed.

We select as initial volume fraction as in Fig. 5. A pure metal
inner coating for r� �0.7,0.73� and a pure ceramic outer coating
over r� �0.97,1.0�. We start with a linear variation of the metal
volume fraction between these coatings. This starting guess falls
inside the optimization feasible region.

The Akima shape-preserving spline interpolates the design vari-
ables y1 , . . . ,yp equally spaced in the radial direction between
0.73 and 0.97, and the fixed points in the imposed coatings. When
values outside the interval �0,1� are produced by the Akima spline,
we modify the spline as in �14�. Due to this procedure the inter-
polation function, while in C0, may become non-differentiable at
some locations in the pure metal or pure ceramic regions. When-

ever the optimizer stops because of this, we restart computations
after a small perturbation of the last computed value of the design
variables. Only a few restarts are needed.

With five, seven, and nine design variables placed equally
spaced from r=0.73 to r=0.97, we obtain the optimal variation
along the radial direction of the hollow cylinder for the metal
volume fraction as in Fig. 5. We obtain these results after a few
small perturbations �of relative magnitude less than 1%�. We note
that the metal component has a smaller density than the ceramic
material, so that the metal-rich optimal design is expected.

The temperature profile for the initial and final volume fractions
are represented in Fig. 6 for the case of seven design variables.
The objective function �mass� history for the case of seven design
variables is shown in Fig. 7 and the history of the stress constraint
is given in Fig. 8. There is a slight violation of the constraint �see
Fig. 8�, but the use of the safety factor insures that the result is
still inside the elastic design, therefore, the solution is valid. The
stress profiles and critical stresses along a radial direction at two
intermediate iterations �see Fig. 9� show the strong dependence of

Fig. 5 The initial guess „�… and optimal designs for the metal
volume fraction function with five „�…, seven „�…, and nine „�…

design variables selected between the pure metal and ceramic
coatings

Fig. 6 The temperature along the radial direction of the hollow
cylinder at the initial design „�… and final metal volume fraction
„�… in the case of seven design variables chosen between the
fixed coatings

Fig. 7 The history of the objective for the case of seven de-
sign variables. We use dimensionless mass M *=M /Mc, where
Mc is the mass of a purely ceramic hollow cylinder.
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the constraints on the temperature-dependent material properties.
The dimensionless radius is defined in Eq. �17� while the dimen-
sionless stress is given by


* =



Ec0�c0�T
�21�

where Ec0 and �c0 are Young’s modulus and the coefficient of
thermal expansion for the ceramic material at room temperature,
and �T=Text−Tint.

The sharp �thin� FGM layer obtained in front of the imposed
ceramic coating may indicate that the optimal solution could
change if we removed the fixed metal and ceramic coatings im-
posed above. We therefore eliminate the inner and outer coatings
and assign equally spaced design variables from r=0.7 to r=1.
The initial guess for 6, 9, and 13 design variables is selected as
before: two constant values at the ends connected by a linear
variation. This time, however, all control points are design vari-
ables allowed to vary in the �0,1� interval in search for the optimal
configuration. The location of the 13 design variables at the initial
guess is shown in Fig. 10. Note that the coordinates of the seven
inner design variables for the present case with 13 design vari-
ables are the same as those in the case of seven design variables
with enforced metal and ceramic coatings. The convergence with
the constraint in Eq. �20� becomes more difficult as the design
space increases. We propose a different measure for the critical
stress violation than the one defined by �19� and �20�, equivalent
to it but giving larger absolute values for stresses that violate the
temperature-dependent critical stresses. The new constraint pro-
vides better scaling for the SQP optimizer and convergence is
improved. When no coatings are enforced, instead of the con-
straint defined by �19�, we use

G�y� = min�v̂�r,T,y�� � 0

0 � y � 1 �22�

where v̂ gives the violation of the critical effective stress in the
composite computed along a radial direction as follows

�if 
��r,T,y� � 0 then v̂�r,T,y� = �
tc�r,T,y� − 
��r,T,y�
otherwise

v̂�r,T,y� = 
��r,T,y� − �
cc�ri,T,y� .
�

�23�

The optimal volume fraction for the mass minimization with
stress constraints when no coatings are imposed is shown in Fig.
10 for a value of the safety factor � equal to 0.9. Notice that we
recover the result in the previous analysis, and this demonstrates
that the sharp �thin� FGM layer is not a mere artifact of the pre-
viously imposed metal and ceramic coatings. The ceramic coating
protects the FGM from high temperatures that induce stress states
close to the temperature-dependent critical values. The nine de-
sign variables case stops at a profile that has a large constraint
violation caused by the absence of a sufficiently thick ceramic
layer.

4.2.3 Problem 2: Stress Violation Minimization. In this case,
the unconstrained non-linear optimization problem we propose is
to minimize the largest ratio between the actual circumferential
stresses and the critical stresses, given by Eg. �18�. The non-linear
optimization problem reads

minimize F�y� = max�w�r,T,y��

Fig. 8 History of constraint value for the case of seven design
variables. The constraint in Eqs. „19… and „20… is slightly vio-
lated, but the use of the safety factor gives stresses that are
nowhere larger than the critical stresses.

Fig. 9 The stress profiles along the radial direction of the hol-
low cylinder for two intermediate iterations for the case of
seven design variables in the problem defined by Eqs. „19… and
„20…. The critical stresses are dependent on the temperature
and, implicitly, on the design variables. Shown are the tangen-
tial „��, �… and radial „�r , �… stresses, and the critical tensile
„�tc, �… and compressive „�cc, �… stresses.
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subject to 0 � y � 1 �24�

where the design variable vector y is defined as before, and the
objective function is the largest value of the ratio between the
local actual and critical stresses. The function w, when larger than
1, gives the violation of the critical effective stress in the compos-
ite computed at some point along a radial direction

�if 
��r,T,y� � 0 then w�r,T,y� =

��r,T,y�

tc�r,T,y�

otherwise

w�r,T,y� =
�
��r,T,y��
�
cc�r,T,y��

� �25�

Any value of w larger than 1 represents a violation of the critical
stress, at the corresponding location, by the actual tangential
stress. A safe design in this case is one in which the objective
function in Eq. �24� reaches sub-unitary values. We emphasize
that the critical effective stresses 
tc�r ,T ,y� and 
cc�r ,T ,y�, com-
puted with the help of Eq. �4� and the data in Tables 4 and 5, are
very strongly dependent on temperature. For this unconstrained
optimization problem we use the dbconf routine from the IMSL
library which implements a quasi-Newton method and an active
set strategy to solve minimization problems subject to simple
bounds on the variables. Sensitivities are computed internally by
finite difference approximations.

4.2.4 Numerical Results for Problem 2. We perform several
tests. The first set of tests is with no inner pressure, while for the
second set we use the same inner pressure as in the case of Prob-
lem 1 ��t̄�=100 MPa�.

We start with an initial design and boundary conditions that
produce stresses violating the critical ones by a large margin. We
select, therefore, the boundary conditions as follows: inner tem-
perature Tint=100°C, outer temperature Text=900°C, zero inner
pressure. The initial guess for the metal volume fraction variation
is constant equal to 0.9 �see Fig. 11�. This corresponds to a ho-
mogenized metal-rich �90% metal by volume� composite material.

The solution for the metal volume fraction variation is given in
Fig. 11 for five �test A�, six �test B�, and nine �test C� design
variables. In Table 1 we give the values of the objective function
�24� and �25� at the initial and final designs as well as the number
of iterations performed during the optimization process. The tem-
perature profiles at the initial and final volume fraction designs for

the case of 6 design variables �test B� are shown in Fig. 12. The
history of the objective function for the same case can be seen in
Fig. 13. Notice the large initial value of the objective function
since the metal-rich material is exposed to the high temperatures,
and the actual tangential stress �which is compressive towards the
outer radius� overcomes the critical effective compressive stress
significantly. For tests A, B, and C we use one restart from a
perturbed state of the design variables with a relative size of less
than 0.1%. The details of the perturbation are given in Table 2 for
the case of six design variables �test B�. Subsequent perturbations
of similar magnitude produced no additional gain in the objective
function value.

The minimizers obtained �all of the solutions in this study are
local minimizers; none can be guaranteed to be a global mini-
mizer� in tests A and B �five and six design variables� show a
remarkable feature: multiple graded regions and a volume fraction
profile that is a non-monotonic function. We call such a material
non-monotonic functionally graded material or NM-FGM. Test C
with nine design variables stops at a local minimum far from the
better results of tests A and B.

The explanation for the existence of such minimizers and of
NM-FGMs in this problem can be understood once we analyze the
temperature-dependent data in Tables 4 and 5. The critical tensile
strength of the ceramic component is highly non-linear in terms of
temperature, and it features a peak at around 500°C, while rapidly
dropping at higher and lower nearby temperatures. This allows
insertion of more than 50% ceramic at r*=0.4 for the local opti-
mal design of test B since at that location the temperature is
around that value. A slightly larger volume fraction of ceramic at
that location would increase the objective function value since the
critical tensile stress would be reduced while the effective tangen-
tial stress would increase. A slightly lower amount of ceramic at
that same location would result in an increase in temperature,
which in turn reduces the yield stress for the metal. It is interest-
ing to observe that, when starting from an initial design as in test
D �see Fig. 14 and Table 1�, which represents a material featuring
a monotonic functionally graded region �which we will call an
M-FGM�, the final design gives a value of the objective function
better by no more than 5% compared to the NM-FGM design.
Even this monotonic design is not representable by a power-law
type function.

We also performed tests E and F �see Table 1, and Figs. 11 and

Fig. 10 Volume fraction profile for the mass minimization with
no enforced coatings. The initial guess „�… and optimal designs
for the metal volume fraction function with six „�…, nine „�…,
and 13 „�… design variables.

Fig. 11 Metal volume fraction profile for the stress minimiza-
tion case without inner pressure. The initial guess „*… and opti-
mal metal volume fraction function with five „�…, six „�…, and
nine „�… design variables selected. The solution with the modi-
fied Mori-Tanaka scheme with six design variables case is also
shown „�….
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14� in which, instead of the ROM scheme for evaluating the ef-
fective material properties at a point where the metal is mixed
with the ceramic, we use the more accurate modified Mori-
Tanaka/fuzzy inference method �see Appendix B for details�. The
optimal metal volume fraction function when the initial design
starts with a constant metal-rich composition �test E� is given in

Fig. 11. Again, a NM-FGM is obtained and the difference from
the results of test B, in which the ROM is used, is only quantita-
tive. Qualitatively the results look the same. Note that we still
compute the effective critical stresses using the ROM according to
Eq. �18�. For the initial guess in Fig. 14 �test F� the M-FGM final
design reaches a slightly better value for the objective function
than the NM-FGM of test E.

The second set of tests is with inner pressure as in Problem 1.
The inner pressure increases the effective tensile tangential
stresses. We expect, therefore, a reduction in the ceramic volume
fraction around r*=0.4 that we obtained in test B. We perform
several tests �G, H, and K�, starting with various initial guesses for
six design variables, as shown in Fig. 15. The initial and final
values of the objective function for tests G, H, and K are given in
Table 3. The result from test G confirms the expectations men-
tioned above: no more than 25% ceramic volume is allowed in the
NM-FGM design, compared to over 52% in the case without pres-
sure �test B�. The best result is obtained from test K where the
final volume fraction function is monotonic �M-FGM� but still not
reproducible by a power-law type function. The objective function
values of the NM-FGM design of test G and that of the M-FGM
from test K are less than 5% apart. In contrast, the design of test
H, which may be closest to be approximated by a power-law
function, is 17% worse than the design of test K. The design of
test K is quite interesting as it can be roughly approximated by a
multi-layered FGM with two graded regions alternated by two
homogeneous regions. To study the convergence in terms of the
number of design variables of the design in test K, we perform
test L, in which we use 13 design variables with the starting guess
being a perturbation of the end design of test K. The final design
from test L is only a minor improvement �objective function value
is reduced by less than 0.4%� over the design in test K.

No restarts have been used in tests G, H, K, and L. The inner
pressure regularizes the problem, to some extent, in the sense that
some of the local minima that were so prevalent in the case with
no inner pressure are now eliminated. This was also the case for
Problem 1 �mass minimization with stress constraints�, where the
higher ceramic density precluded optimal NM-FGM designs. The
main source for the NM-FGM designs is the non-linear tempera-
ture dependence of the critical strength of the ceramic and the
major drop in yield stress of the metal component with increased
temperature.

The purely metal and ceramic layers at, respectively, the inner
and outer regions of the hollow cylinder, are seen as a common
feature of the best designs in the stress minimization case �Prob-
lem 2�, as was the case in the mass minimization with stress
constraints �Problem 1�. None of the optimal designs in Problem 2
can be represented by a power-law type function �see results from
tests A, B, D, E, F, G, K, L�.

We conclude that three factors play a major role in optimal
design of material composition for FGMs and in generation of
optimal solutions with multiple graded regions and non-
monotonic graded profiles:

Table 1 Stress-minimization problem with no inner pressure. Objective function values at
initial and final design and the number of optimization iterations performed in each case.

Test
A

Five DVs
B

Six DVs
C

Nine DVs
D

Besta Six DVs
E

Six DVs M-T
F

Bestb DVs M-T

Obj. function value
F�y� at initial design

4.980 4.980 4.980 0.534 4.959 0.530

Obj. function values
F�y� at restarts

1.760 0.805 1.075 No restart 0.775 0.523

Obj. function value
F�y� at final design

0.554 �6�c 0.544 �9� 0.997 �6� 0.514 �2� 0.531 �10� 0.503 �6�

aSee Fig. 14 for initial guess for the design variables.
bSee Fig. 14 for initial guess for the design variables.
cThe number in parentheses indicates the total number of optimization iterations performed until reaching convergence.

Fig. 12 Temperature profiles along the radial direction for the
initial and final material design for the stress minimization
problem with six design variables „test B…

Fig. 13 History of the objective function for the stress minimi-
zation problem with six design variables „test B…
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• the consideration of temperature-dependent materials prop-
erties, especially the dependence of the critical stresses on
temperature;

• the definition of the objective function and constraints. Here
we used a scalar critical stress measure to optimize against
reaching critical stress values anywhere in the FGM.

5 Conclusions
We considered the problem of optimal material design of metal-

ceramic FGMs with temperature-dependent materials parameters.
We have solved the 2D thermoelastic problem in plane strain for
the cross section of a hollow cylinder under thermal and mechani-
cal loadings and defined two nonlinear programming problems in
terms of variables that control the continuous metal volume frac-
tion along the radial direction of the cylinder.

A meshfree method, the element-free Galerkin method, was
used to solve the heterogeneous thermoelastic problems. The ad-
vantage to using the EFG over, for example, the finite element
method, may seem minimal here: better resolution of the continu-
ous volume fraction variation with fewer nodes. For combined
shape-material optimization problems that involve large shape
changes, the use of such a meshfree method is critical.

We introduced new optimization criteria in terms of
temperature-dependent critical stresses and solved two problems:

Table 2 Perturbations used in the stress minimization problem for restarting the iterations in
the case of six design variables

Design variables F�y�b

Initial guess 0.9 �0.70�a 0.9 �0.76� 0.9 �0.82� 0.9 �0.88� 0.9 �0.94� 0.9 �1.0� 4.981
Final values 1.0 0.97192 0.55996 1.0 0.0 0.443291 0.805
Perturbed restart 1.0 0.97193 0.55997 1.0 0.0 0.44329 0.805
Final design 1.0 0.856 0.479 1.0 0.0 0.0 0.544

aThe numbers in parentheses indicate the radial coordinates of the design variable.
bThe value of the objective function defined by Eqs. �24� and �25�.

Fig. 14 The best metal volume fraction profile for the stress
minimization problem with no inner pressure. Initial guess „�…
and the optimal solutions with six design variables with the
ROM „�… or the modified Mori-Tanaka method „�….

Fig. 15 Initial and final profile of the metal volume fraction for the stress minimization problem
with inner pressure. The designs of tests G and K provide the best values of the objective
function. Convergence in terms of the number of design variables is shown by comparing test
K and L final profiles.
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a mass minimization with stress constraints, and a stress minimi-
zation problem. Due to the higher density of the ceramic compo-
nent used here, the mass minimization with stress constraints led
to optimal shapes of the volume fraction function that featured a
single thin functionally graded region following a narrow purely
ceramic thermally protective layer. The optimal solution did not
change whether fixed metal and ceramic coatings at the inner and
outer regions were imposed or not. Attention has to be paid to the
formulation of the constraints, since mathematically equivalent
forms do not lead to numerically equivalent solutions due to dif-
ferences in scaling.

In the stress minimization problem we obtained a variety of
interesting minimizers given by non-monotonic volume fraction
functions or profiles with multiple graded regions. Designs featur-
ing non-monotonic volume fraction variations produced values of
the objective functions which were close to designs with multiple
functionally graded regions alternating with homogeneous layers.

The method for computing critical stresses for a mixture, and
the non-linearity of the temperature-dependent critical stress of

the ceramic component combined with the rapid drop with in-
creased temperature of the metal yield stress, were the most im-
portant factors that led to the particular shapes of optimal volume
fraction function designs. Other critical aspects that control the
material design of FGMs were found to be the selection of the
objective function and constraints, and the specific thermome-
chanical loading. The particular effective medium theory used for
computing material properties in regions of material mixtures �the
rule-of-mixture and the more complex and realistic combination
of Mori-Tanaka and fuzzy inference method� also influenced the
optimal design but only quantitatively.

Further analysis should be focused on determining measures of
critical stresses in FGMs that correlate well with experiments. The
methodology developed in the present work can directly use such
results if they become available.

The results obtained here advocate for the need of allowing
sufficient generality in the selection of the function that represents
the volume fraction of the FGM components. We have shown that
power-law type variations for the volume fraction function may
exclude significantly better solutions given by non-monotonic or
multi-layered functionally graded profiles.
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Appendix A: Temperature-Dependent Material Proper-
ties

We consider metal-ceramic FGMs made from titanium alloy
Ti-6Al-4V and zirconium oxide ZrO2. In Tables 4 and 5, we list
the thermomechanical properties of ZrO2 and Ti-6Al-4V, respec-
tively. The values are from �41�, with a few exceptions for which

Table 3 Stress-minimization problem with inner pressure. Ob-
jective function values at initial and final design and the num-
ber of optimization iterations performed in each case. See Fig.
15 for initial guesses for the design variables.

Test
G

Six DVs
H

Six DVs

K
Best

Six DVs
L

13 DVs

Obj. function value
F�y� at initial design

1.60 1.026 0.970 0.836

Obj. function value
F�y� at final design

0.840 �7�a 0.940 �5� 0.806 �4� 0.803 �6�

aThe number in parentheses indicates the total number of optimization iterations
performed.

Table 4 Temperature-dependent material properties for ZrO2

T �°C� 20 1000 1200
E �GPa� 175 133 119

T �°C� 20 500 1000 1050 1080
� �1/ °C�10−6� 6.53 6.53 7.59 7.72 8.0

T �°C� 20 100 200 400 800 1200
� �W/m°C� 2 2 2 2 2.2 2.5

T �°C� 20 200 400 500 600 800 1000 1100

tc

�MPa� 126 117 122 140 123 112 105a 96

T �°C� 20 500 1000 1200

cc

�MPa� 2050 1600 1200 798

aLinearly interpolated value from values at 800°C and 1100°C.

Table 5 Temperature-dependent material properties for Ti-6Al-4V

T �°C� 20 1000
E �GPa� 113.8 113.8

T �°C� 20 100 205 315 425 540 650 815 900
� �1/ °C�10−6� 8.6 8.6 9.0 9.2 9.4 9.5 9.7 10.5a 10.91

T �°C� 20 500 1000
� �W/m°C� 6.6 6.6 6.6

T �°C� 20 315 425 540 815 900

tc

�MPa� 921 655 572 427 �80�b �1�

aLinearly extrapolated value.
bAkima spline extrapolated values.
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we linearly extrapolate from the last two values in the tables. In
one case, using linear extrapolation would give negative values
for the critical stress at high temperatures. In such a case, we
employ the Akima shape-preserving spline interpolating the given
values to extrapolate to values not given in �42�. We take the
critical stresses in compression �
cc� for the metal to be the same
as the critical tensile stresses �
tc�. In calculating material prop-
erties for temperature values between the data points in these
tables, we use Akima spline interpolation.

Appendix B: Effective Material Properties
The effective material properties at a point in the graded part of

the FGM composite can be evaluated using various
micromechanics-based formulations, such as the simple ROM, the
Mori-Tanaka method, the self-consistent method, etc. Here we use
the ROM and also a modified Mori-Tanaka with fuzzy inference
briefly described below.

For the rule of mixture, a generic material property P of the
FGM is expressed in terms of the corresponding material proper-
ties of the matrix �Pm� and the inclusion �Pi� components as
follows

P�r� = y�r�Pi�r� + �1 − y�r��Pm�r� �B1�

where y�r� is the inclusion’s volume fraction at a location r in the
FGM.

We use the Mori-Tanaka method to calculate effective proper-
ties of FGM at a point where one of the components is dilute: no
more than 30% �volume fraction is 0.3�, so that the component
can still be considered as the inclusion in a matrix. We find the
bulk �K� and the shear �G� moduli using the Mori-Tanaka method

K = Km +
y�r��Ki − Km��3Km + 4Gm�

3Km + 4Gm + 3�1 − y�r���Ki − Km�

G = Gm +
y�r��Gi − Gm��5Gm�3Km + 4Gm��

5Gm�3Km + 4Gm� + 6�1 − y�r���Km + 2Gm��Gi − Gm�

� = y�r��i + �1 − y�r���m +
y�r��1 − y�r����i − �m��Ki − Km�

3KiKm/4Gm + �1 − y�r��Km

� = �m +
3y�r��m��i − �m�

�1 − y�r����i − �m� + 3�m
�B2�

Here, y�r� is the volume fraction of the inclusion at point r and
subscripts i and m stand for the inclusion and the matrix, respec-
tively. Young’s modulus E and Poisson’s ratio � are calculated
from K and G. For locations where the inclusions cannot be easily
distinguished from the matrix �we take the range 0.3�y�r��0.7�,
the material parameters are evaluated by means of a fuzzy infer-
ence �10�. Note that the material properties used here are func-
tions of position as well as temperature.
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Thermoelastic Dynamic
Instability „TEDI… in Frictional
Sliding of a Half-Space Against a
Rigid Non-Conducting Wall
In the sliding of half-spaces with constant friction coefficient, two classes of instabilities
are well known: thermoelastic instability (TEI), which occurs for sufficiently long wave-
lengths and Dynamic Instability (DI), which happens at sufficiently high friction coeffi-
cient, and whose growth factor increases linearly with wave number. Although the two
phenomena look therefore quite distinct, their coupling is discussed here for an elastic
and conducting half-space sliding against a rigid and non-conducting wall. The coupling
between thermal and dynamic effects is not always negligible. In fact, surprisingly, new
areas of instability are found, called thermoelastic dynamic instabilities (TEDI), similar
to TEI at high speeds and DI at low speeds. TEDI lowers the critical speed and friction
coefficient in many conditions even to zero. At low speeds, TEDI is ill-posed as DI at
small wavelengths, and hence a regularized friction law like the Rice-Ruina one would
probably be needed to correct the results. �DOI: 10.1115/1.2712232�

Keywords: thermoelastic contact, TEI, thermoelastic instability, squeal, frictional
vibrations

1 Introduction
Many models of friction explain the intrinsically “unstable” na-

ture of friction, including the difference between static and dy-
namic coefficient, the dependence of friction on temperature, pres-
sure, speed, and so on �Dowson �1��. In addition, scatter,
oscillations, and even “capriciousness” in friction experiments are
so typical that they do not discourage the even unexperienced
experimentalist �Duffour and Woodhouse �2��.

Friction instabilities are of interest in the sliding of tectonic
plates during earthquakes �Ben-Zion �3�, Rice et al. �4��, in the
sliding of rubber-like materials �Barquins et al. �5��, in the gen-
eration of noise and vibration �Kinkaid et al. �6��, or the appear-
ance of hot spots and other thermally induced vibrations in auto-
motive brakes or clutches �Kennedy and Ling, �7�, Anderson and
Knapp, �8��. Moreover, stick-slip vibrations are a limiting factor in
machine tool slides and other linear positioning devices �Popp and
Rudolph �9��. Citing Johnson �10�: “Dynamic friction, leading to
frictionally excited vibrations, is a vast subject, covering extreme
ranges of space and time: from seismic faults stretching many
kilometers to crystal lattice spacing in the Atomic Friction Micro-
scope; from the years which separate earthquakes to the kilohertz
frequencies of squealing brakes and railway wheels.” A full un-
derstanding of the transient response is often impossible, and the
definition of frictional instabilities is often very helpful, even as-
suming the simplest models of Coulomb constant coefficient of
friction. Limiting the attention to this case �of constant friction
coefficient� there are two basic frictional instability phenomena,
those involving Dynamic Instabilities �DI� and those involving
thermoelastic instabilities �TEI�. They result from the interaction
between relatively simple physical processes, notably, the elastic
deformation of the contacting bodies, the development of fric-
tional forces at the interface opposing the motion, and the conse-
quent generation of frictional heat. However, they are typically

treated separately, as people interested in DI often neglect thermal
aspects, and vice versa, under the assumption that the time scales
involved are widely separated. We shall briefly recollect some
basic findings about DI and TEI, before proceeding with a new
coupled analysis, including both inertia terms, and frictional heat-
ing.

1.1 Dynamic Instabilities. The dynamic class of friction in-
stabilities includes unstable propagation of surface waves in con-
tinuous bodies. The existence of self-excited oscillations at the
sliding interface can be understood if we start from the simplest
case of a free surfaces, for which we can only have propagation of
Rayleigh waves. These waves have amplitudes which decay ex-
ponentially with distance from the free surface. For bonded inter-
faces, Stoneley found that if the shear wave speeds of the contact-
ing materials do not differ greatly, a different type of waves can
exist, named Stoneley waves �Stoneley, �11��. They can travel
along the interface of two bonded contacting elastic bodies, i.e.,
when friction is infinite. At the other extreme, i.e., for frictionless
contact, Achenbach and Epstein �12� and Murty �13� then found
“smooth contact Stoneley waves,” “slip waves,” or finally “fric-
tionless generalized Rayleigh waves,” which occur for a wider
range of material combinations than the Stoneley waves for
bonded contact. Recently, a lot of analytical effort has been de-
voted to the study of similar types of dynamic stability of fric-
tional sliding. In particular, Martins �14� considered a single half-
plane sliding against a rigid wall, and found that instability
emerges only for friction coefficients larger than 1. However, Ad-
ams �15�, in the general case for two elastic half-planes, showed
that the critical coefficient can be much lower than 1 and can even
be zero for two elastic materials of similar material properties,
especially in the case of layered geometries �Adams �16��. More
precisely, when the so-called “generalized Rayleigh waves” exist
already for the frictionless contact, steady frictional sliding along
an interface between dissimilar elastic solids with Coulomb fric-
tion is unstable for arbitrarily small values of friction �Rice et al.
�4�, Ranjith et al. �17��, Ranjith et al. �18��.
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1.2 Thermoelastic Instabilities. Another, so far separate,
class of instability, is that due to coupling of thermal and mechani-
cal contact boundary conditions at the interface. This class of
instability emerges either with static contact, when the conduction
of heat across an interface between two thermoelastic bodies even
in the absence of sliding and hence frictional heating, or when
there is a pressure-dependent thermal contact resistance at the
interface that varies with local contact pressure, as is reasonable to
assume, because the microscopic contact area varies with pressure
�Barber et al. �19�, Clausing and Chao �20��. An example appli-
cation involves the solidification of a metal against a plane mold,
where thermoelastic contact between the partially solidified cast-
ing and the mold can be unstable, leading to non-uniform pressure
distribution and alloy composition �Richmond and Huang �21�,
Yigit and Barber �22�, Yigit �23��.

In the case of frictional sliding, the typical and most important
effect is that frictional heating at the interface depends on the
contact pressure, and this couples the thermal and mechanical
parts of the problem, giving rise to frictionally excited thermoelas-
tic instability �TEI� �Barber �24�, Dow and Burton �25��. In this
process, any perturbation in contact pressure causes a correspond-
ing perturbation in heating and hence thermal distortion, which
exaggerates the initial perturbation. TEI has received more atten-
tion in technological applications for which it is of critical impor-
tance, such as the design of brakes and clutches �Kennedy and
Ling �7�, Anderson and Knap �8��. For a given friction coefficient,
there will be some sliding speed Vcr above which the system will
be unstable �whereas DI is typically due to a critical friction co-
efficient alone�.

1.3 Thermoelastic Dynamic Instabilities. Recently �Affer-
rante et al. �26��, we discovered an interesting coupling between
dynamics and thermal effects, which we named TEDI, in a simple
1D model, with a constant coefficient of friction. The model with-
out coupling shows a trivial response; in particular, no dynamic
instability, and a frictional heating �TEI� instability.1 The coupled
model leads to instability at all speeds, although at small speeds
the non-linear limit cycle obtained is clearly an oscillation closer
to the quasi-static approximation. At larger speeds, TEDI gives
rise to significant increase of maximum or mean force and fric-
tional heating. Hence, we expect to see that in cases where both
instabilities are at play, the coupling would also show some inter-
esting and unexpected features.

In the present paper, we aim at discussing the continuum case
of the one half-space sliding against a rigid and non-conductor.
This is the extension of Martins’ paper �Martins et al. �14�� of DI,
with frictional heating added, or the extension of Burton et al. �28�
paper, with inertia terms added. In the case without frictional heat-
ing �Martins et al. �14��, the dynamic instability only occurs for
large friction coefficient �fcr=1�, whereas it would be much lower
if the bodies were elastically more similar. For the TEI case, a
critical speed can be defined for each friction coefficient, as a
function on the wavelength. We shall find that the combined case
shows instability in a much larger range of cases, sometimes hav-
ing features close to DI and sometimes close to TEI.

2 Problem Statement
We shall consider the case of an elastic, conducting half-space,

sliding against a rigid and non-conducting wall �Fig. 1�.
This case generalizes the TEI case by Dow and Burton �25�,

and the Martins et al. �14� case for DI. The choice of a non-
conducting rigid wall geometry obviously corresponds to a limit
case, which is only approximately met by practical systems such
as a metallic material against a ceramic material. However, it can
be shown that the general case of two elastic non-conducting ma-

terials would increase the number of parameters by six �i.e., up to
12!�, and then it would become almost impossible to show the
coupling between thermal and dynamic effects in a significant
range of all parameters, as done here, where we shall have already
six independent parameters. In contrast, the TEI case by Dow and
Burton �25� had only one independent parameter �!�, and the Mar-
tins et al. �14� case for DI had two independent constants �friction
coefficient and Poisson’s ratio�.

The governing equations for coupled thermoelasticity �from
Boley and Weiner �29�, Eqs. �1.4.1–1.4.9�� are

K�2T = �cE
�T

�t
+ mT0

�e

�t
�1�

��ij

�xj
= �

�2ui

�t2 �2�

with the constitutive law

�ij = ��ije + 2�eij − m�ij�T − T0� �3�
and

eij =
1

2
� �ui

�xj
+

�uj

�xi
� m = �3� + 2��� �4�

�K ,� ,� ,cE ,� ,� are the thermal conductivity, the coefficient of
thermal expansion, the density, the specific heat, and Lame’s con-
stants of the material, respectively�.

Eliminating the stresses between �2�–�4�, we have

��2ui + �� + ��
�e

�xi
− m

�T

�xi
= �

�2ui

�t2 �5�

If we neglect the coupled term in the heat equation �see Boley and
Weiner �29�, Eringen �30�, Chadwick �31�, Nowacki �32�� and
consider plane strain conditions �uz=0 and e=�ux /�x+�uy /�y�,
Eqs. �1� and �5� reduce to

�2T

�x2 +
�2T

�y2 −
1

k

�T

�t
= 0 �6�

�� + 2��
�2ux

�x2 + �
�2ux

�y2 + �� + ��
�2uy

�x�y
− m

�T

�x
− �

�2ux

�t2 = 0 �7�

�� + ��
�2ux

�x�y
+ �

�2uy

�x2 + �� + 2��
�2uy

�y2 − m
�T

�y
− �

�2uy

�t2 = 0 �8�

We assume that the thermoelastic body occupies the region y
�0 and that in this region the displacements and temperature can
be written as

ux = R�A exp��	x − sy + bt�� �9�

uy = R�B exp��	x − sy + bt�� �10�

T = R�C exp��	x − sy + bt�� �11�

Substituting these results into �6�–�8� and canceling the common
exponential factors, we obtain the three algebraic equations

1However, the TEI critical speed is only due to the displacement constraint in the
normal direction and could be removed by considering a force control in normal
direction �Afferrante and Ciavarella �27��.

Fig. 1 Elastic half-plane sliding against a rigid wall
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�− 	2 + s2 −
b

k
�C = 0 �12�

�− 	2�� + 2�� + �s2 − b2��A − ��� + ��	sB − �m	C = 0

�13�

− ��� + ��	sA + ��� + 2��s2 − �	2 − b2��B + msC = 0 �14�

One eigenvalue for s2 is clearly given by Eq. �12� as

s3
2 = 	2 +

b

k
�15�

The other two eigenvalues correspond to eigenfunctions for which
C=0 and are solutions of the equation

�c1
2�s2 − 	2� − b2��c2

2�s2 − 	2� − b2� = 0 �16�

where

c1
2 =

�� + 2��
�

c2
2 =

�

�
�17�

are the dilatational and shear wave speeds, respectively. Hence,
the two solutions for s1

2 ,s2
2 are

s1
2 = 	2 +

b2

c1
2 s2

2 = 	2 +
b2

c2
2 �18�

To extract the eigenfunctions, it is convenient to rewrite Eqs.
�13� and �14� in terms of the wave speeds. We have

�− c1
2	2 + c2

2s2 − b2�A − �	�c1
2 − c2

2�sB =
�m	C

�
�19�

− �	�c1
2 − c2

2�sA + �− c2
2	2 + c1

2s2 − b2�B = −
msC

�
�20�

When s=s1, C=0, and these equations are both satisfied if

�s1A = 	B �21�

so a suitable eigenfunction set is

s1 =		2 +
b2

c1
2 A1 = 	K1 B1 = �s1K1 C1 = 0 �22�

where the arbitrary constants A1 ,B1 ,C1 have been eliminated in
favor of a new arbitrary constant K1, representing the degrees of
freedom associated with the eigenvalue s1.

With s=s2 and C=0, Eqs. �19� and �20� are both satisfied if

A	 = − �s2B �23�

so a suitable eigenfunction set is

s2 =		2 +
b2

c2
2 A2 = − �s2K2 B2 = 	K2 C2 = 0 �24�

where the arbitrary constant K2 represents the degrees of freedom
associated with the eigenvalue s2.

With s=s3, C�0, and we must solve the inhomogeneous equa-
tions �19� and �20�. We obtain

A =
�m	C

�b�c1
2/k − b�

B = −
ms3C

�b�c1
2/k − b�

, �25�

so a suitable eigenfunction set is

s3 =		2 +
b

k
A3 = �m	K3 B3 = − ms3K3 C3 = �b� c1

2

k
− b�K3

�26�

where the arbitrary constant K3 represents the degrees of freedom
associated with the eigenvalue s3.

Therefore, a general solution for the temperature and displace-
ments fields can be written as

ux = R�A1e��	x−s1y+bt� + A2e��	x−s2y+bt� + A3e��	x−s3y+bt�� �27�

uy = R�B1e��	x−s1y+bt� + B2e��	x−s2y+bt� + B3e��	x−s3y+bt�� �28�

T = R�C1e��	x−s1y+bt� + C2e��	x−s2y+bt� + C3e��	x−s3y+bt�� �29�

where the constants Ai ,Bi ,Ci are given by �22�, �24�, and �26�.

3 Known Results
We shall start by obtaining, as special cases, the known results

of a free surface, of frictionless interface waves, of the Martins-
Adams Dynamic Instability for friction with no heating effects,
and the Burton TEI instability when thermal effects are included,
but not inertia.

3.1 Free Surface: Rayleigh Wave Equations. If the body
has a free surface and therefore no contact and no heating, we
have K3=0, and the traction-free condition ��yy =�xy =0 at y=0�
gives

�yy = �� �ux

�x
+

�uy

�y
� + 2�

�uy

�y
= ��	�A1 + A2� − �� + 2���s1B1

+ s2B2� �30�

�xy = �� �uy

�x
+

�ux

�y
� = �	��B1 + B2� − ��s1A1 + s2A2� �31�

Using �17�, �22�, and �24�, the above equations can be rewritten in
the following form

− 2	s1K1 + ��	2 + s2
2�K2 = 0 �32�

��c1
2�	2 − s1

2� − 2c2
2	2�K1 − 2c2

2	s2K2 = 0 �33�
For a non-trivial solution, we require

4	2c2
2s1s2 + �	2 + s2

2��c1
2�	2 − s1

2� − 2c2
2	2� = 0 �34�

The Rayleigh wave solution corresponds to the case where

�	x + bt = �	�x − cRt� �35�
and hence

b = − �	cR �36�
Substituting this result into �18� and �34� and canceling a factor of
	4c2

2, we then obtain

4	�1 − M1
2��1 − M2

2� − �2 − M2
2�2 = 0 �37�

where

M1 =
cR

c1
M2 =

cR

c2
�38�

in agreement with the classical equation for Rayleigh waves.

3.2 Frictionless Contact Interface Waves. Now, suppose the
boundary conditions are frictionless contact with a rigid plane, so
uy =�xy =0 at the surface. We obtain �simplifying Ai ,Bi by �22�
and �24��

�s1K1 + 	K2 = 0 �39�

	s1K1 − �s2
2K2 = 0 �40�

and these have a non-trivial solution if

s1 = 0 or s2
2 = 	2 �41�

The second root corresponds to b=0, from �18� and hence does
not correspond to a traveling wave. If s1=0, There is no decay
with y and hence we have simply a dilatational wave propagating
parallel to the interface.
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3.3 Frictional Contact Interface Waves: DI. When consid-
ering Coulomb friction at the interface, but no frictional heating,
the case treated by Martins et al. �14� is recovered. For the mo-
ment, we shall neglect frictional heating �or assume that the ther-
mal expansion term m=0�. The frictional tractions will act in the
positive x-direction on the surface y=0 of y
0, which is a “nega-
tive” x-surface, and hence �xy is negative. Thus, the mechanical
boundary conditions are therefore

uy�x,0,t� = 0 �xy�x,0,t� − f�yy�x,0,t� = 0 �42�

�since �yy must be compressive and hence also negative�.
Substituting for Ai, Bi from Eqs. �22� and �24�, we get

ıs1K1 + 	K2 = 0 �43�

�− c2
2s1	 − ıf�c1

2 − 2c2
2�	2 + ıfc1

2s1
2�K1 + �ıc2

2s2
2 + 2fc2

2	s2�K2 = 0

�44�
For a non-trivial solution of this equation, we require the vanish-
ing of the determinant. Therefore, after some algebraic manipula-
tion and by using �18�, we obtain

s1�	2 − s2
2� − ıf	�	2 + s2

2 − 2s1s2� = 0 �45�
which is the same equation as in Martins et al. �14�.

In the limit case of incompressible material ��=0.5 and c1
→�, s1=	�, �45� simplifies in the following form

s2 =		2 +
b2

c2
2 =

�f − 1

�f + 1
	 �46�

Figures 2 and 3 shows some sample results �Martins et al. �14��.
In particular, the variation of the real �Fig. 2� and imaginary �Fig.

3�. Part of the dimensionless growth rate b̃=b /	c2 with the fric-
tion coefficient f is plotted for different Poisson ratios �. We have
instability only for high friction coefficients �f �1�. Notice the

imaginary part b̃ represents the speed at which the disturbance
moves relative to the half-plane. In particular, the disturbance
moves with the sliding direction, and for low � its speed is always
larger than the speed of the shear elastic waves c2. At high � and
f , the disturbance moves at speed lower than c2.

3.4 Frictional Heating: Quasi-static Solution (TEI). We
now include frictional heating, but neglect inertia terms. Hence,

the classical TEI case is obtained. The instantaneous sliding ve-
locity is needed to compute the amount of frictional heating. This
is affected by the perturbation in the displacements, as

V = V0 −
�ux

�t
�x,0,t� �47�

If quasi-static conditions are assumed, only thermal perturbations
need to be considered. In this case, the boundary conditions are

uy�x,0,t� = 0 �48a�

�xy�x,0,t� − f�yy�x,0,t� = 0 �48b�

− K
�T

�y
�x,0,t� + V0�xy�x,0,t� = 0 �48c�

where the last equation gives the thermal balance between the
frictional heating and the heat flow entering the half-space. Fur-
ther, we are assuming that a dynamic wave instantaneously propa-
gates, i.e., c1 ,c2→�, and only the eigenvalue s3 needs to be con-
sidered. In this case Eqs. �48� give the well-known characteristic
equation �see Dow and Burton �25��

K		1 +
b

	2k
=

2��1 + ���fV0

�1 − ���1 +	1 +
b

	2k
� �49�

and the stability boundary corresponds to the passage of a real
zero through the origin b=0 when

V = Vcr =
K	�1 − ��
f���1 + ��

�50�

Figure 4 shows some example results. In particular, the depen-

dence of the real part of the dimensionless growth rate b̂=bk /	2

on the dimensionless wave number =	k /c1 is shown for differ-
ent friction coefficients f . Notice this plot is similar to Fig. 8 of
Azarkhin and Barber �33�, except that here a different dimension-
less form of parameters is proposed in order to facilitate the com-
parison with the later cases of TEDI.

The domain with negative Re�b̂� means that the waves with
corresponding frequency  decay. In addition the perturbation
with largest growth rate eventually dominates the process.

Fig. 2 Some example results for Dynamic Instability „DI…:
variation of the real part of the dimensionless growth rate b̃
with the friction coefficient f for different �

Fig. 3 Some example results for Dynamic Instability „DI…:
variation of the imaginary part of the dimensionless growth
rate b̃ with the friction coefficient f for different �
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4 New Results: Frictional Sliding With Heat Genera-
tion (TEDI)

If we include inertia terms and boundary condition �48c� modi-
fies to

− K
�T

dy
�x,0,t� + V�xy�x,0,t� = 0 �51�

Equation �51� is non-linear, since it contains the perturbation
both in V and in �xy. We therefore need to perform a linear per-
turbation about the uniform solution in which

V = V0 �xy�x,0,t� = − fp0 �52�

and p0 is the �uniform� unperturbed contact pressure. We then
have

V�xy
t �x,0,t� = 
V0 −

�ux

�t
�x,0,t����xy�x,0,t� − fp0� �53�

where �xy
t is the total shear stress �sum of the unperturbed stress

and the perturbation�. Dropping the second-order term in this
product, we have

V�xy
t �x,0,t� = − fVp0 + V0�xy�x,0,t� + fp0

�ux

�t
�x,0,t� �54�

and hence the linearized form of the perturbation equation �48c� is

− K
�T

�y
�x,0,t� + V0�xy�x,0,t� + fp0

�ux

�t
�x,0,t� = 0 �55�

In the full coupled case �when thermal and dynamic effects are
considered�, replacing the constants Ai, Bi, Ci using Eqs. �22�,
�24�, and �26�, the boundary conditions �48� give

ıs1K1 + 	K2 − s3mK3 = 0 �56�

�− c2
2s1	 − ıf�c1

2 − 2c2
2�	2 + ıfc1

2s1
2�K1 + �ıc2

2s2
2 + 2fc2

2	s2�K2

+ 
− ıc2
2	s3 + f�c1

2 − 2c2
2�	2 − fc1

2s3
2 + fb� c1

2

k
− b��mK3 = 0

�57�

�− V0c2
2s1	 + f

p0

�
c2

2b	�K1 + �ıV0c2
2s2

2 − ıf
p0

�
c2

2bs2�K2

+ 
Ks3b

m
� c1

2

k
− b� − ıV0c2

2	s3 + ıf
p0

�
c2

2b	�mK3 = 0

�58�
For a non-trivial solution, we require the determinant of the

coefficient matrix to be zero. Therefore, after algebraic manipula-
tions, we obtain the following characteristic equation

fV0mc2
2�	2 − s2

2��2c2
2	2 + c1

2�s1
2 − 	2�� + f

p0

�
mc2

2b�fc1
2�s1

2 − 	2�s2

+ ıc2
2	�	2 − s2

2�� − Ks3c1
2�s1 + s3��c2

2�	2 − s2
2�s1

+ ıf	�2c2
2�s1s2 − 	2� + c1

2�	2 − s1
2��� = 0 �59�

For constant pressure p0 and speed V0, the number of param-
eters in Eq. �59� can be reduced. In fact, if we define the dimen-
sionless growth rate as follows

z =
bk

c1
2 �60�

the terms s1, s2, and s3 can be rewritten as

s1 = 		1 +
z2

2 s2 = 		1 +
ĉ2z2

2 s3 = 		1 +
z

2 �61�

where

 =
	k

c1
and ĉ =

c1

c2
=	2�1 − ��

1 − 2�
�62�

With the above positions, the characteristic Eq. �59� becomes

fH
ĉ2z2

23
 z


� f	1 +

ĉ2z2

2 − ı�p̂0 − �2 +
ĉ2z2

2 �V̂0�
+

ĉ2z2

2 
�1 +
z

2�	1 +
z2

2 + �1 +
z2

2�	1 +
z

2�
+ ıf
�2 +

ĉ2z2

2 ��1 +
z

2 +	1 +
z

2	1 +
z2

2�
− 2�1 +

z2

2�	1 +
z

2	1 +
ĉ2z2

2

− 2�1 +
z

2�	1 +
z2

2	1 +
ĉ2z2

2 � = 0 �63�

where we have introduced the following dimensionless param-
eters

V̂0 =
V0

c1
; p̂0 =

p0

�
; H =

2��1 + ���k

�1 − ��K
�64�

Notice that practical values of V̂0 and p̂0 must be very small
compared with unity, whereas typical values of H are around
unity.

We study the irrational characteristic Eq. �63� by searching ei-
genvalues z such that

Re�si� � 0 i = 1,2,3 �65�

In order to do this, we transform �63� in a polynomial equation in
z by squaring it six times.

In this way we are able to obtain a polynomial equation of 36th
order in z. However, the only valid solutions will be those satis-
fying the original problem �63� and �65�.

Fig. 4 Some example results for the TEI: variation of the real
part of the dimensionless growth rate b̂=bk /�2 with the dimen-
sionless wave number �=�k /c1 for different friction coefficient
f „V̂0=10−3, H=1….
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5 Results
The roots of the polynomial equation obtained from the trans-

formation of �63� are found by using the Jenkins-Traub algorithm
��34,35��. Alternatively, and as a further check, we also used a
direct iterative complex root finder, where the choice of the start-
ing solution was, however, very critical �generally the solutions
were mapped upon gradual increase of a given parameter, using a
starting point was obtained from a previous case�.

5.1 TEDI Maps. In this section, we present various maps of
instability where the critical friction coefficient for TEDI
�fcr,TEDI�, DI �fcr,DI�, and TEI �fcr,TEI� is defined in terms of oper-

ating parameters V̂0 and p̂0.

5.1.1 Effect of the Sliding Speed V̂0. In Figs. 5 and 6 the maps

of instability are presented in terms of V̂0 for different wave num-
bers . At high wave number ��2.9�10−2, Fig. 5� instability

occurs for all friction coefficients if V̂0 is low and, perhaps sur-

prisingly, only at high f for larger V̂0.
When lower values of  are considered, the map of instability

modifies as shown in Fig. 6. In particular, the region of instability
enlarges and the instability zone governed by TEI eigenvalues
increases. However, TEDI continues to be the only possible
mechanism of instability at low speeds.

Finally, notice when �2.9�10−2 �see Fig. 5� it is possible to
define a speed range in which instability occurs only for f �1,
whereas when �2.9�10−2 �see Fig. 6�, this range reduces to a

single value of V̂0.

5.1.2 Effect of the Pressure p̂0. Figures 7 and 8 show the maps
of instability in terms of p̂0 for the same  considered in Figs. 5
and 6, respectively.

Again, friction instability is governed by DI eigenvalues at high
friction coefficient �f �1�. When �2.9�10−2 �Fig. 7�, the criti-
cal friction coefficient fcr is less than one only for high pressure

Fig. 5 Map of instability in terms of V̂0 for �=0.3, p̂0=10−3 and
�=3Ã10−2

Fig. 6 Map of instability in terms of V̂0 for �=0.3, p̂0=10−3 and
�=10−3

Fig. 7 Map of instability in terms of p̂0 for �=0.3, V̂0=10−3 and
�=3Ã10−2

Fig. 8 Map of instability in terms of p̂0 for �=0.3, V̂0=10−3 and
�=2.5Ã10−4
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and fcr=0 for p̂0�1.5�10−3. In Fig. 8 the TEI critical friction
coefficient is less than 1 and quasi-static eigenvalues dominate the
system response for fcr,TEI� f � fcr,DI=1.

5.2 TEDI growth rates. In this section we present results for
the exponential growth rate R�z�.

5.2.1 Effect of the Parameter H. By examining equation �63�,
we notice the frictionless dynamic solution is recovered for H
=0. Increasing H from zero corresponds to activating thermal ef-
fects, and new families of unstable roots appear.

In Fig. 9, the variation of the exponential growth rate R�z̄� with
the friction coefficient f is shown for different values of H. Dy-
namic solutions are plotted with dashed-dotted line �we have in-
stability only for very high friction coefficient f �1 and hardly
any further change occurs in the plot when we increase thermal
effects�.

The classical quasi-static �TEI� solutions give negative growth
rates for the parameters of Fig. 9 and, hence, are not plotted here.

When thermal effects, even if very small, are added, a new family
of unstable roots appear �named TEDI here�, and the system can
be unstable even for friction coefficients less than 1. In particular,
a critical friction coefficient exists and it is a function of the Pois-
son’s ratio, speed, and pressure, as shown in the above maps.
However, H affects the growth rate but not the stability boundary.
In other words, fcr is independent of H.

In addition, the growth factor is generally much smaller than
the frequency of oscillation �i.e., the real part of the eigenvalue is
much smaller than the imaginary part�, and hence we expect that
its effect can only be seen if sliding continues for a long term.
Physically, this is to give time essentially for the frictional heating
to produce significant departure from the quasi-static solution.

5.2.2 Effect of the Dimensionless Wave Number . Figure 10
shows the variation of the exponential TEDI growth rate R�z�
with the sliding speed V̂0 for different wave numbers . Notice we

can define a characteristic speed V̂1 and a particular value of 

=cr �corresponding to the curve with minimum in V̂1� for which
we have unconditional instability, i.e., the system is unstable for
all speeds.

The characteristic speed V̂1 linearly increases with p̂0 and it
does not depend on material parameter H and dimensionless wave
number , as shown in Fig. 11.

Figure 12 shows the exponential growth rate R�z� as a function
of the dimensionless wave number  for different friction coeffi-

cients and V̂0� V̂1. TEDI growth rates are plotted with solid line,
TEI ones with a dashed line, and DI ones with a dashed-dotted
line. For small , a zoom of the plot was done to better show the
behavior of the various eigenvalues. In fact, the regions of �1
shown in the original figure, are limited to the case of nanometer
wavelengths for most materials. Hence, we shall concentrate in
the region of the zoomed figure on the left, for small �1.

Here we find that, when f �1, we do not have any DI, and we
therefore find only TEDI and TEI solutions,2 which are of com-
parable size in the region of the zoom. Clearly, while the TEI
growth rates are positive only for very small wave numbers, they
become negative for  larger than a certain limit value lim. Fur-
ther, TEI eigenvalues show a maximum at =lim/2, whereas
TEDI eigenvalues do not show a maximum, and continue to in-

2These curves remind the single curve in the dimensionless plot of Azarkhin and
Barber �33�.

Fig. 10 Variation of the exponential growth rate R„z… with the
sliding speed V̂0 for different wave numbers � and H=1, f=0.5,
�=0.3, p̂0=10−3

Fig. 11 Variation of the characteristic speed V̂1 with the pres-
sure p̂0 for different frction coefficients „�=0.3…

Fig. 9 Variation of the exponential growth rate R„z… with the
friction coefficient f for different value of H, �=0.3, p̂0= V̂0
=10−3, �=2
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crease for larger and larger wave numbers, i.e., smaller and
smaller wavelengths. TEDI eigenvalues increase monotonically
with wave number and they tend to an asymptotic value, for
which the smaller wavelengths �i.e., larger wave numbers� are
most unstable. It possible, however, that, as in the case of DI roots
�Ranjith and Rice �18��, these high growth factors render the re-
sponse of a material interface with Coulomb friction ill-posed.
Physically, this implies that during sliding, energy is transferred to
shorter wavelengths, leading to pulse sharpening and splitting, and
creates an inherent grid-size dependence. Ranjith and Rice �18�
showed that an experimentally based rate- and state-dependent
friction law, in which the shear strength in response to an abrupt
change in normal stress evolves continuously with time, regular-
izes the problem.

Turning back to the TEDI growth rates, they are positive only
when  is greater than a certain value cr. This value cr increases
with the friction coefficient moving, for example, from 1.161
�10−2 for f =0.5 to 2.9�10−2 for f =0.8. Figures 13 and 14 show

that cr is an increasing linear function of V̂0 and decreasing of p̂0,
respectively. In particular, for low pressure instability is for 

�cr. In fact, the characteristic speed V̂1 reduces by decreasing p̂0

and, as shown in Fig. 15, for V̂0� V̂1 the TEDI eigenvalues have
a positive real part when �cr. In addition, the effect of H on cr
is negligible.

Finally, Fig. 15 shows the variation of the exponential growth

rate R�z� with  for different f and V̂0� V̂1.
Here, we find, again, that TEI roots dominate the system behav-

ior at low , but now TEDI eigenvalues show a maximum and for
high wave numbers �small wavelengths� the system is stable.
However, the growth factors seem to be three orders of magnitude
smaller than the TEI eigenvalues �see the cut in the scales of the
figure�, and hence it is unlikely that these new roots at high speed
have a significant effect.

6 Conclusions
In the classical dynamic instability �DI� in the simplest case of

a single half-plane sliding against a rigid non-conductor �studied
by Martins et al. �14��, instability occurs at sufficiently high fric-
tion f , in which case all wavelengths are made unstable. Vice
versa, when inertia effects are neglected and frictional heating is
considered, TEI instability occurs at all wavelengths bigger than a
certain value, depending on the sliding speed. The coupling be-
tween dynamic and thermoelastic effects also makes unstable a

new family of solutions corresponding to frictionless contact in-
terface waves, i.e., the dilatational waves propagating parallel to
the interface, which acquire a positive growth factor with thermal
effects.

Various maps of instability are presented in terms of material
properties �Poisson’s ratio �� and operating parameters �sliding
speed and applied pressure� for different ranges of the wave num-
ber of the perturbation.

At high wave numbers �small wavelengths� TEI disappears and
instability will be governed by DI at high friction coefficients, by
TEDI at low friction. At low wave numbers �large wavelengths�,
the three forms of instability are possible. In particular, when the
sliding speed is very high, the mechanism of instability will be
dominated by TEI also at high friction coefficients. At low speeds,
DI is the dominant mechanism when f �1, whereas TEDI occurs
for f �1. The critical friction coefficient for TEDI is zero for low

Fig. 12 Variation of the exponential growth rate R„z… with � for different values of the friction coefficient f,
p̂0=10−3, V̂0=10−3< V̂1, H=1 and �=0.3

Fig. 13 Dependence of �cr on V̂0 for p̂0=10−3, H=1, f=0.5, and
�=0.3
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Poisson ratios ���0.2� and it increases with �. In particular, for
high Poisson ratios, the system is always stable when f �1.

New TEDI eigenvalues are found at low speeds, similar to the
DI ones and in particular, they seem to be ill-conditioned in the
sense that they give rise to unbounded growth factors at large
wave numbers. A regularized friction law is required to make
sensible predictions, like the Rice-Ruina law. Vice versa, at large
speeds, the instability roots are more similar to the TEI roots, and
hence the regularized law is not needed. However, in this range
the growth factors seem to be particularly small.
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Nomenclature
b � growth rate �s−1�

c1 � dilatational wave speed �m/s�
c2 � shear wave speed �m/s�
cE � specific heat �J /kg°C�
cR � Rayleigh wave speed �m/s�
E � Young’s modulus �N/m2�
f � friction coefficient
k � diffusivity �m2/s�
K � thermal conductivity �W/m°C�
	 � wave number �m−1�
p � contact pressure �N/m2�

p0 � unperturbed contact pressure �N/m2�
q � heat flux per unit area �W/m2�
t � time �s�

T � temperature field �°C�
u � displacement field �m�

V0 � sliding speed �m/s�
V � instantaneous sliding speed �m/s�
� � thermal expansion coefficient �°C−1�
� � imaginary unit
� � Lame’s constant �N/m2�
� � shear modulus �N/m2�
� � Poisson’s coefficient
� � density �Kg/m3�
� � stress field �N/m2�
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For most practical purposes, the focus is often on obtaining statistical moments of the
response of stochastically driven oscillators than on the determination of pathwise re-
sponse histories. In the absence of analytical solutions of most nonlinear and higher-
dimensional systems, Monte Carlo simulations with the aid of direct numerical integra-
tion remain the only viable route to estimate the statistical moments. Unfortunately,
unlike the case of deterministic oscillators, available numerical integration schemes for
stochastically driven oscillators have significantly poorer numerical accuracy. These
schemes are generally derived through stochastic Taylor expansions and the limited
accuracy results from difficulties in evaluating the multiple stochastic integrals. As a
numerically superior and semi-analytic alternative, a weak linearization technique based
on Girsanov transformation of probability measures is proposed for nonlinear oscillators
driven by additive white-noise processes. The nonlinear part of the drift vector is appro-
priately decomposed and replaced, resulting in an exactly solvable linear system. The
error in replacing the nonlinear terms is then corrected through the Radon-Nikodym
derivative following a Girsanov transformation of probability measures. Since the Radon-
Nikodym derivative is expressible in terms of a stochastic exponential of the linearized
solution and computable with high accuracy, one can potentially achieve a remarkably
high numerical accuracy. Although the Girsanov linearization method is applicable to a
large class of oscillators, including those with nondifferentiable vector fields, the method
is presently illustrated through applications to a few single- and multi-degree-of-freedom
oscillators with polynomial nonlinearity. �DOI: 10.1115/1.2712234�
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1 Introduction
The available approximate analytical methods for determination

of transitional probability density or statistical moments of the
response of stochastically driven nonlinear oscillators generally
suffer from the dimensionality curse and/or restrictions on the
type and number of stochastic excitations �1�. A much more ver-
satile and popularly adopted route is a Monte Carlo simulation
�MCS� aided by direct numerical integration of the associated
stochastic differential equations �SDEs�. Direct MCS, while often
regarded as less elegant, can be used to solve problems of signifi-
cantly higher complexity and dimensions. Even then, its imple-
mentation is hindered by the intensively repetitive computation
over a possibly large ensemble and the accuracy of the direct
integration scheme. Indeed, as compared to numerical integration
schemes for deterministic DEs, most of the available ones for
SDEs, often derived via stochastic Taylor expansions, have con-
siderably lower orders of accuracy. This happens due to difficul-
ties in computing the multiple stochastic integrals �MSIs� �2,3�. A
few such typical schemes include the Euler-Maruyama
�Maruyama �4��, stochastic Heun �Gard �5��, stochastic Runge-
Kutta �6–8�, and stochastic Newmark �9,10�. Moreover, there are
also implicit variations of these methods �10–12� that have a
higher stochastic numerical stability than their explicit counter-
parts. Although the implicit methods work well for even stiff
SDEs, solutions tend to become inexact for very low step sizes
�10�. These stochastic integration schemes may also be catego-

rized as strong and weak. Although strong schemes are designed
to simulate the pathwise unique response corresponding to a par-
ticular realization of the stochastic excitation �13�, weak schemes
only compute statistical moments of functions of the response by
replacing the MSIs with random variables having simpler distri-
butions �3�. Accordingly, a weak algorithm is computationally
faster and the preferred choice in most engineering applications,
wherein it suffices to obtain approximations to certain statistical
moments or distribution functions. Nevertheless, among all these
integration schemes—weak or strong, implicit or explicit—the
ones with the highest accuracy are the stochastic Runge-Kutta �an
explicit method of weak order 2 �8�� and the stochastic Newmark
�an implicit method of weak order 3 �10��.

Among the analytical or numeric-analytic techniques, lineariza-
tion methods �the equivalent linearization method in particular�
have found a certain measure of acceptability. Recently, Socha
�14,15� has provided a review of equivalent and statistical linear-
ization in the analysis of nonlinear oscillators. Equivalent linear-
ization methods essentially try to replace the nonlinear function
by an equivalent linear one such that the error in the replacement
is minimized in a sense. The approximating linear function may
be obtained through several criteria, e.g., mean square approxima-
tion �16,17�, errors in response moments �18�, energy �19�, fre-
quency �20�, probability density �21�, and an improved version of
Gaussian equivalent linearization �22�. These methods generally
use iterative procedures for the determination of the equivalent
linear function and, subsequently, response statistics. Such statis-
tical linearization methods have been applied to such applications
as filtering, control �23� and computation of response statistics of
hysteretic oscillators �24�. It is however known that the class of
global linearization methods, although very efficient when it
works, is unacceptably inaccurate for most nonlinear single- and
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multi-degree-of-freedom �SDOF and MDOF� systems. Other than
globally defined equivalent linearization schemes, mention may
also be made of a few other forms of stochastic linearizations.
These include conditional linearization �25� and local forms of
linearizations, viz. the phase space linearization �26� and the lo-
cally transversal linearization �27,28�. Although conditional lin-
earization lacks universal applicability, the others are limited in
numerical accuracy. Indeed, the observation on the lack of general
applicability is valid for several other analytical tools, such as the
method of moment closures �29�, stochastic averaging �30�, maxi-
mum entropy �31� etc. Moreover, the quality of approximation via
all these methods in the general context of nonlinear oscillators is
very often poor.

A weak and numeric-analytic method of stochastic lineariza-
tion, referred to as the Girsanov linearization method �GLM�, is
presently proposed for nonlinear oscillators under additive sto-
chastic excitations. The essence of the GLM is an appropriate
linearized replacement of the nonlinear drift terms followed by an
appeal to the Girsanov transformation of probability measures to
weakly correct for the error caused due to this replacement. This
correction is multiplicative in nature, satisfies a scalar SDE that is
“exactly” solvable in terms of the linearized solution and is re-
ferred to as the Radon-Nikodym derivative �also called the likeli-
hood ratio�. In particular, the solution for the likelihood ratio is in
the form of a stochastic exponential whose argument is in the
form of integrals of the linearized solution. However, the numeri-
cal computation of the stochastic exponential is generally prone to
considerable numerical instability and forms the most crucial part
of the development of the GLM. The present framework devel-
oped to arrest the numerical instability requires, as a first step, that
the time interval of interest be discretized into smaller subinter-
vals and the linearization performed over each such subinterval.
Two versions of the GLM then evolve depending on how the
stochastic exponential is computed over each subinterval. Al-
though version I uses a stochastic Taylor expansion for an ap-
proximate evaluation of the exponential, version II does it in such
a way that the error is introduced only due to the finiteness of the
ensemble size. Other than the semi-analyticity and unparalleled
numerical accuracy, yet another useful feature of the GLM is its
ability to treat oscillators even with nondifferentiable nonlinearity.
Nevertheless, only a limited numerical illustration of the GLM is
presently provided through its application to a few single-
and two-degree-of-freedom �2-DOF� oscillators with polynomial
nonlinearity.

2 Girsanov Linearization
As mentioned earlier, present study restricts itself to the deri-

vation of the GLM in the context of nonlinear �mechanical� oscil-
lators while keeping in mind that the method may be readily ex-
tended to a more general class of nonlinear SDEs. Thus consider
the equations of motion of an n-DOF oscillator excited by white
noise processes in the following form:

�M�Ẍ + CẊ + KX + ��X,Ẋ,t� = �
r=1

q

Gr�t�Ẇr + F�t� �1�

where X= �x�1� ,x�2� ,… ,x�n��T�Rn is the displacement vector.
Equation �1� is subject to the initial condition X�t=0�ªX0

= �x0
�1� ,x0

�2� , . . . ,x0
�n��T, �M� �C�, �K��Rn�n are constant mass,

damping, and stiffness matrices, respectively, ��X , Ẋ , t� is any
vector function �not necessarily smooth� that ensures a unique
solution of Eq. �1� at least in the weak sense, �Gr�t� :R→Rn� is
the set of n diffusion vectors �additive�, �Wr�t� �r� �1,q�� is a
q-dimensional vector of independently evolving zero-mean
Wiener processes with Wr�0�=0, E��Wr�t�−Wr�s��2�= �t−s� , t�s
∀r� �1,q� and F�t�= �F�j��t� � j=1, . . . ,n� is the externally applied
deterministic force vector. E denotes the expectation operator with
respect to the underlying probability measure P. The description

of the oscillator as in Eq. �1� being entirely formal �due to non-

differentiability of Wiener processes, which implies that Ẇr�t� ex-
ists merely as a valid measure, but not as a mathematical func-
tion�, they may more appropriately be recast as a system of 2n
first order SDEs in the following incremental form:

dx1
�j� = x2

�j� dt

dx2
�j� = a�j��X,Ẋ,t�dt + �

r=1

q

br
�j��t�dWr�t�, j = 1,2, . . . ,n �2�

where

a�j��X,Ẋ,t� = − �
k=1

n

Ĉjkẋ
�k� − �

k=1

n

K̂jkx
�k� − �̂�j��X,Ẋ,t� + F̂�j��t�

�Ĉ� = �M−1��C�, �K̂� = �M−1��K� ,

�F̂� = �M−1��F�, ��̂� = �M−1����

Br�t� = �br
�j��t��j = 1, . . . ,n� = �M−1�Gr�t� �3�

Moreover, define X̄0= �x1,0
�1� ,x2,0

�1� ,x1,0
�2� ,x2,0

�2� , . . . ,x1,0
�n� ,x2,0

�n��T�R2n.
Now we assume that the drift vector A= �a�j� � j=1, . . . ,n� �coeffi-
cient of dt term� can be decomposed into two constituent parts as
a�j�=al

�j�+anl
�j� �i.e., A=Al+Anl�, where Al denotes the linear part of

the vector field that should remain in the linearized equations
following GLM and Anl denotes the nonlinear part. To ensure

boundedness of the solution vector X̄� �x1
�1� ,x2

�1� ,x1
�2� ,

x2
�2� , . . . ,x1

�n� ,x2
�n��T�R2n ∀t �such that X1ªX= �x1

�j��T�Rn ,

X2ª Ẋ= �x2
�j��T�Rn� and uniqueness in a weak sense, it is as-

sumed that the drift and diffusion vectors, A= �a�j�� and Br

= �br
�j�� are measurable and satisfy the following bounds:

	A�X̄,t�	 + 
�
r=1

q

Br�t�
 � Q1�1 + 	X̄	� �4a�

	A�X̄,t� − A�Ȳ,t�	 � Q2	X̄ − Ȳ	 �4b�

where Ȳ �R2n, Q1 ,Q2�R+ and 	.	 denotes the Euclidean norm
�i.e., the L2�P� norm in the associated probability space
�� ,Ft , P��. Let the initial conditions be mean square bounded, i.e.,

E	X̄�t0�	2�� �without a loss of generality, the initial condition
vector is presently treated as deterministic�. The time interval
�0,T� of interest is so ordered �discretized� that 0= t0� t1¯ � ti

� ¯ � tL=T, hi= ti− ti−1, and Ti= �ti−1 , ti�, where i�Z+. For fur-
ther simplification of the rest of the presentation without a loss of
focus on the main issues, we assume a uniform time step hi
=h∀ i unless otherwise stated.

We are in interested in computing the weak response, i.e., ex-
pectations of the form

v = E�f�X̄,t�� �5�

where f�·� denotes some real-valued function. When we utilize
Monte Carlo simulation to evaluate the expectation, v is replaced
by its sample-mean formula �32�

v � v̂ =
1

N�
m=1

N

�f�X̄�m�,t�� for large N �6�

where X̄�m��t� denotes the mth sample path of X̄�t� and N is the
number of sample paths �i.e., the ensemble size�. Since it suffices
to evaluate v̂ using weak solutions of Eq. �1�, we intend to use a
measure transformation based on Girsanov’s theorem �2� to lo-
cally linearize Eq. �1� and thus �hopefully� obtain highly accurate
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estimates of the required expectation based on the known analyti-
cal solutions of the linear SDEs. By “local linearization,” we
mean that the governing SDEs would be replaced by a system of
linearized ones so that the ith such linearized SDE could serve as
an accurate replacement for the nonlinear SDE over Ti.

Briefly, the Girsanov theorem implies that if the drift coefficient
of an Ito process �with a nondegenerate diffusion coefficient� is
altered to an extent �such that the original and altered drift coef-
ficients satisfy the Novikov condition, as defined below�, then the
law of the process would not be altered drastically. Indeed, the law
of the drift-modified process will remain absolutely continuous
with respect to that of the original process and we can explicitly
compute the Radon-Nikodym derivative �see the Radon-Nikodym
theorem below�. Before going into the formulation of GLM we
state a few definitions and theorems that would be useful during
the formulation.

DEFINITION � ABSOLUTE CONTINUITY OF MEASURES�. Let
�� ,F , �F�t=0P� is a filtered probability space (i.e., �� ,F , P� is a
probability space and �F�t�0 is a filtration on �� , P�; presently, it
is the filtration generated by the Brownian motion processes). If
we fix T�0 and let Q be another probability measure on �F�T,
then we say that Q is absolutely continuously with respect to P�FT
(the restriction of P to FT) and we write Q	 P if P�H�
=0⇒Q�H�=0 for all H�FT.

RADON-NIKODYM THEOREM. Let the probability measure Q be
absolutely continuous with respect to probability measure P, then
there exists a random variable 
����0; such that 
��� is FT

measurable, EP�
����=1 and Q�H�=�H
���dP for any measur-
able set H. In that case we write dQ /dP=
��� where, 
��� is the
Radon-Nikodym derivative or the likelihood ratio.

DEFINITION �A MARTINGALE�. A stochastic process �Mt�t�0 on
�� ,F , P� of dimension n is called a martingale with respect to
filtration �F�t�0 (and with respect to P) if

i. Mt is �F�t�0 measurable for all t
ii. E��Mt���� for all t
iii. E�Ms �Mt�=Mt for all s� t

The Martingale property. Suppose Q	 P with dQ /dP=
���
on FT �filtration generated by the Brownian motion processes�.
Then Q	 P for all t� �0,T� and if we define Mt=d�Q� /d�P�, then
Mt is a martingale with respect to Ft and P.

Although a linearization of nonlinear oscillators using the Gir-
sanov theorem could be nonuniquely performed, an obvious and
rather tempting choice is to arrive at the linearized equations by
simply removing Anl from Eq. �2�. If this route is adopted, then
the transformed �linearized� SDEs over Ti take the form

�7�

where �Ŵr
i�t� �r� �1,q�� is another vector of q-dimensional

Brownian motion process �that absorbs the nonlinear part, Anl, of
the drift field� by the Levy characterization of Brownian motion

�13� under a new probability measure Q. Note that �Ŵr
i�t�� as well

as the linearized displacement and velocity processes, X̃1
i �t�

ª �x̃1
�j�,i � j� �1,n�� and X̃2

i �t�ª �x̃2
�j�,i � j� �1,n��, are restricted to

the interval Ti as indicated by the superscript i. Equation �7� is

subject to initial conditions X̄
˜ i�ti−1�= X̄

˜ i−1�ti−1�, i�1 so that

X̄
˜ 1�t0�= X̄�t0� for i=1. Moreover, we define X̄

˜ i

= �x̃1
�1�,i , x̃2

�1�,i , . . . , x̃1
�n�,i , x̃2

�n�,i�T. Now, to compensate for the re-
moval of nonlinear drift terms, we need to augment the linearized
SDEs with the one-dimensional correction process yi�t� �i.e., the
ith Radon-Nikodym derivative� that satisfies the following scalar
SDE:

dyi = �
j=1

n

�
r=1

q

�br
�j��t��−1anl

�j��X̃i,X̃
˙ i,t�yid Ŵr

i�t� �8�

subject to the known initial condition yi�ti−1�=yi−1�ti−1� so that
y1�t0�=1.0 for i=1. Toward a simpler presentation, we henceforth
remove the superscript i provided that the interval Ti is unambigu-
ously clear from the context. Note that an exact analytical solution
to the linearized SDEs corresponding to Eq. �7� is readily avail-
able �2� irrespective of the dimension 2n, and this solution is
independent of y�t�. Indeed, a very attractive feature of the GLM
is that it can exploit the available information on the solutions of
linear SDEs—an area that is well researched and developed. If
one writes Eqs. �7� and �8� in terms of the drift-modified Brown-

ian motion processes Ŵr�t� for each r, then it is clear that the

resulting SDEs are linear in X̄
˜

. Equation �7� may then be written

in the new probability law �Q̃� as

dX̄
˜

= ÃX̄
˜

dt + F̄�t�dt + �
r=1

q

�Br�t��dŴr�t� �9�

where

Ã = 
0 1

− K̂11 − Ĉ11

0 0

− K̂12 − Ĉ12

¯ ¯

0 0

− K̂1n − Ĉ1n

0 0

− K̂21 − Ĉ21

0 1

− K̂22 − Ĉ22

¯

¯

¯

¯

0 0

− K̂2n − Ĉ2n

] ] � ]

] ] � ]

0 0

− K̂n1 − Ĉn1

0 0

− K̂n2 − Ĉn2

¯ ¯

0 1

− K̂nn − Ĉnn

�
is the system matrix of the GLM-based linearized Eq. �7�. Note

that K̂jk and Ĉjk are the elements of stiffness and damping matri-

ces and F̄�t��R2n is obtainable from the normalized forcing vec-

tor F̂�t��Rn �Eq. �3�� by augmenting the latter with zeros at
locations of the displacement components. The solution of Eq. �9�

with the initial condition vector X̄
˜

i−1
i

ª X̄
˜ i−1�ti−1� is of the form

X̄
˜ �t� = exp�Ã�

ti−1

t

ds�X̄
˜

i−1 + exp�Ã�
ti−1

t

ds�
�� ti−1

t �exp�− Ã�
ti−1

s

ds1�F̄�j��t��ds + exp�Ã�
ti−1

t

ds�
�� ti−1

t �exp�− Ã�
ti−1

s

ds1��
j=1

n

�
r=1

q

�br
�j��t���dŴr�s� �10�

The Radon-Nikodym derivative y�t� is a strictly positive random
process �an exponential martingale� computable as
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y�t� = yi−1 exp��
ti−1

t

�
j=1

n

�
r=1

q

�br
�j��t��−1anl

�j��X̃1,X̃2,t�dWr�s�

−
1

2�
ti−1

t

�br
�j��t��−2�anl

�j��X̃1,X̃2,t��2 ds� �11�

Computations of required expectations may now be accomplished

in terms of the GLM-based linearized solution as: E�f�X̄i , ti��

=E�yif�X̄
˜

i , ti��, subject to a localized form of Novikov’s restric-
tions on Anl �i.e., E�exp� 1

2�ti−1

t Anl
2 ds����� for t�Ti.

Unfortunately, even if one chooses a very small step size, it is
generally not possible to develop the above idea into a numeri-
cally stable algorithm. One may expect numerical instabilities in
the form of the computed moment histories underflowing or over-
flowing along with widely varying oscillations. Reasons behind
this may be traced to the fact that, for the Girsanov theorem to be
valid, expectations of the strictly positive martingales �yi�t��
should be exactly equal to 1.0 ∀i�Z+ �3�. For instance, if the
drift nonlinearity is such that it affects the solution significantly
away from that corresponding to the linear SDE �i.e., the SDE
without Anl�, then sample paths of �yi�t�� would oscillate consid-
erably away from 1. These fluctuations imply that the computed
expectation of yi�t� for a given i would generally be quite different
from 1.0 for finite �possibly small� ensemble sizes. Moreover,
these errors would also propagate very fast in time, as explained
in the following. Restricting attention to the interval Ti, we note
that the argument of yi�t� may be expanded in an Ito-Taylor’s
series �each term of which is a zero-mean Gaussian Ito integral�
so that yi�t� essentially admits an expression in the form of an
infinite product of log-normal �exponentiated Gaussian� random
variables. However, owing to a truncation of the Ito-Taylor expan-
sion after a certain number of terms, this product would remain
finite for all practical purposes. Moreover, as we progress over
successive time intervals, y�t� is updated once more through ex-
ponentiation, i.e., according to the identity: yi�t�=��t��k=1

i−1 yk
k,

where ��t� is the stochastic exponential that appears as the coef-
ficient of yi−1

i−1 in Eq. �11�. Although the construction of y�t� and
the linear solution through exponential functions allows the GLM
to be developed into a Lie group method, evaluations of such
functions require more floating point operations thereby leading to
higher errors. Thus, it is nearly impossible to precisely satisfy the
requirement E�yi�t��=1 especially for sufficiently large i as the
errors also accumulate exponentially. In other words, given
that y�t� is composed purely of exponential functions, there are
just two possibilities, viz. either limi→� E�yi�t��=0 or
limi→� E�yi�t��=�.

Figure 1�a� shows typically zero-mean Gaussian and �the cor-
responding� log-normal probability density functions �PDF� and
Fig. 1�b� shows two sample paths of typically cumulative products
of log-normal random variables—while one of these paths over-
flows, the other underflows. It is evident �Fig. 1�a��, unlike the
Gaussian PDF �G-PDF� that is symmetric �0, the log-normal
density is not symmetric �1.0. Indeed, clustering of the realiza-
tions of such a log-normal variable �generated from a zero-mean
Gaussian variable� is more toward the left of 1 than to the right.
Thus, it is this asymmetry of the log-normal PDF that causes paths
of yi�t� underflow more often than overflow as i→�. The same
reasoning also convinces us about the near impossibility of arriv-
ing at a GLM-based linearized drift field uniformly valid over the
entire time interval of interest because this would create very large
fluctuations in the paths of y�t� away from 1.0. In other words, the
GLM has to be applied along with a discretization of the time axis
and it is thus a numeric-analytic procedure for SDEs. These are

probably the reasons why methods based on Girsanov’s measure
transformation have hardly been applied for stochastically driven
nonlinear oscillators of engineering interest.

In order to circumvent such numerical difficulties in the GLM,
it is then required to modify the linear SDEs that provide a solu-
tion “close” to that of the nonlinear SDEs, at least locally �i.e.,
within a given subinterval Ti�. This would, in turn, reduce the
oscillations �away from 1.0� in the sample paths of yi�t� to a
considerable extent. This is presently achieved by locally intro-
ducing a “subtracting set” Si, whose elements are simply various
terms in the stochastic Taylor �Ito-Taylor� expansion of the non-

linear vector function Anl
i �X̃1 , X̃2 , t� �restricted to Ti� about

Anl
i−1�ti−1�ªAnl,i−1. Moreover, these elements are hierarchically ar-

ranged in the same way as they appear in the Ito-Taylor series.

Taking, for instance, the jth scalar component anl
�j�,i�X̃1 , X̃2 , t� of

Anl
i �X̃1 , X̃2 , t�, its Ito-Taylor expansion based at anl,i−1

�j� is of the
form

anl
�j�,i = anl,i−1

�j� + �
k=1

n

�
r=1

q

br
�k��anl,i−1

�j�

�x2
�k� ��t − ti−1�

+ � �

�t
anl,i−1

�j� + �
k=1

n �x2
�k� �

�x1
�k� + ai−1

�k� �

�x2
�k��anl,i−1

�j�

+
1

2 �
k,l=1

n

�
r,s=1

q

br
�k�bs

�l� �2anl,i−1
�j�

�x2
�k��x2

�l���t − ti−1� + ¯ �12�

The subtracting set is of the form: Si= �S1
i ,S2

i ,S3
i , . . . �, where, S1

i

Fig. 1 „a… Typical PDFs of Gaussian and log-normal distribu-
tions and „b… the cumulative product of lognormal random
variables
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=Anl,i−1, S2
i =�k=1

n �r=1
q br

�k��anl,i−1
�j� /�x2

�k���t− ti−1�, and so on. Thus,
with the incorporation of the elements of the subtracting set as
hierarchically corrective forcing terms we rewrite Eq. �2� as

dX̄ = ÃX̄ dt + F̄�t�dt + ̄v dt + �
r=1

q

Br�t��Br
−1�t��Anl�X,Ẋ,t� − ̄v�dt

+ dŴr�t��

Then, we replace the term �Br
−1�t��Anl�X , Ẋ , t�− ̄v�dt+dŴr�t��

with dW̄r�t�. Therefore, the linearized SDEs in �X̄˜ 1 , X̄
˜

2� are obtain-
able as

dX̄
˜

= ÃX̄
˜

dt + F̄�t�dt + ̄v dt + �
r=1

q

Br�t�dW̄r�t� �13�

where, ̄v�t��R2n is obtained from the normalized forcing vector

v=�i=1
v Si; v�Rn, v�Z+ �just as F̄�t��R2n is obtainable from

the normalized forcing vector F̂�t��Rn� by augmenting the latter
with zeros at locations of the displacement components. The
Radon-Nikodym derivative is given by

y�t� = yi−1 exp��
ti−1

t

�
j=1

n

�
r=1

q

�br
�j��t��−1�anl

�j��X̄˜ 1,X̄
˜

2,t� − v
�j��dW̄r�s�

−
1

2�
ti−1

t

�br
�j��t��−2�anl

�j��X̄˜ 1,X̄
˜

2,t� − v
�j��2 ds� �14�

From limited numerical experiments, it has been observed that it
generally suffices to use only the first element S1 of the subtract-
ing set and thus just employ ̄1 as the corrective forcing vector to
construct the linearized SDEs �Eq. �13��. We may consequently
expect an adequate reduction in the spurious oscillations of y�t� in
the process. Figure 2 shows the variation of stochastic process y�t�
with and without application of 1. As is indeed verifiable from
this figure, by using v �Eq. �14�� we are in fact trying to force the
expectation of y�t� close to 1.0. Subsequently, the functional � of
Eq. �6� can be approximately computed through its Monte Carlo
estimator

v̂�t� =
1

N�
i=1

N

y�i��t��f�X̃�i�,X̃
˙ �i�,t��; t � Ti �15�

We capture the essence of the idea behind the GLM through the
following theorem.

Theorem on Girsanov Linearization. Consider the system of

SDEs (Eq. (2)) in terms of the process X̄�t� :R→R2n with X̄�t
=0�= X̄0 and Wr�t� being a q-dimensional Weiner process under

the filtration Ft. Let the velocity drift vector A�X̄ , t� be decom-
posed additively as A=Al+Anl, where Al and Anl are respectively

linear and nonlinear in X̄. Now consider the linearized SDEs (Eq.

(13)) in X̄
˜

�R2n with the initial condition X̄
˜ �t=0�= X̄0. Under a

local form of Novikov restriction for t�Ti= �ti−1 , ti� (i.e.,
E�exp� 1

2�ti−1

t �Anl− ̄v�2 ds����), the Radon-Nikodym derivative
y�t� in Eq. (14) is a positive martingale with respect to Ft and

measure P. Then the measure Q̃ for the linearized process X̄
˜

is

given by dQ̃=y�t�dP so that the Q̃-law of X̄
˜

is same as the P-law

of X̄. Thus, if f�X̄ , t� :R2n�R→R is a (weakly) bounded and mea-

surable function, then the following identity holds: EP�f�X̄ , t��

=EQ̃�y�t�f�X̄˜ , t��.
An “Order Infinity” Algorithm. We have thus far been focusing

only on issues related to how to check large oscillations in y�t�
and in the process preventing overflows and underflows. However,
use of Ito-Taylor expansions for the evaluation of y�t� still re-
mains a stumbling block in a versatile and efficient algorithmic
implementation of GLM. Computing MSIs not only requires sub-
stantial computational effort, the associated Ito-Taylor expansion
also demands that the nonlinear part of the vector field be suffi-
ciently differentiable—a condition that is generally not met in
impact and elastoplastic problems. Even though the GLM is a
numeric-analytical technique, its implementation as outlined
above requires the evaluation of a large number of MSIs for com-
puting y�t� over every time step �see the Appendix�. For instance,
an O�h4� time-marching algorithm �map� based on a direct Ito-
Taylor expansion for an SDOF Duffing oscillator under an addi-
tive white noise requires 5 MSIs as compared to 10 MSIs required
in the GLM. Indeed, adopting the above form of the GLM re-
quires about twice the number of Ito integrals than that required
for solutions of SDEs through a direct Ito-Taylor expansion.
Worse, we cannot use such expansions for nondifferentiable non-
linear functions appearing in the original SDEs that are not suffi-
ciently differentiable.

We now propose an alternative procedure for computing y�t�
without taking recourse to stochastic Taylor expansion. In particu-
lar, we focus on a different procedure for the evaluation of
integrals of the forms �within a subinterval Ti�

�ti−1

ti anl
�j��X̄˜ 1 , X̄

˜
2 , t�dW̄r�s� and �ti−1

ti �anl
�j��X̄˜ 1 , X̄

˜
2 , t��2 ds. Recall that

computation of y�t� �Eq. �14�� involves only these two typical
integrals. The first may be interpreted as a zero-mean Gaussian

random variable with variance �ti−1

ti E�anl
�j��X̄˜ 1 , X̄

˜
2 , t��2 ds, i.e., the

integral of the second type. It therefore suffices to restrict our
attention to the latter integral alone. We use a Monte Carlo ap-
proach for evaluation of this integral �32�. Thus, we treat

�ti−1

ti E�anl
�j��X̄˜ 1 , X̄

˜
2 , t��2 ds as a mathematical expectation with re-

spect to a new probability measure P̄, whose density is uniformly
distributed in �ti−1 , ti�. In other words, we have the identity

�
ti−1

ti

E�anl
�j��X̄˜ 1,X̄

˜
2,t��2 ds = hiEP̄�E�anl

�j��X̄˜ 1,X̄
˜

2,t��2� �16�

where the expectation inside the bracket is with respect to the
Girsanov-transformed measure Q. Accordingly, we generate a set
of random time instants �t��k��Ti �k�Z+� that are uniformly dis-
tributed in Ti. Thus, based on the known analytical solution of the

linearized SDEs �Eq. �13��, we can evaluate E��anl
�j��X̄˜ 1 , X̄

˜
2 , t��2� as

Fig. 2 A realization of the process y„t… with and without the CF
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a continuous function of t�Ti in closed form and then find its
values at each of t��k�. Now, to evaluate the expectation on the
right-hand side of Eq. �15�, we again employ the Monte Carlo
estimator

EP̄�E�anl
�j��X̄˜ 1,X̄

˜
2,t��2� �

1

N�
k=1

N

�E�anl
�j��X̄˜ 1�t��k��,X̄

˜
2�t��k��,t��k���2�

�17�

Given the finite precision arithmetic used in all computing ma-
chines, it is generally not feasible to increase the accuracy of
numerical results indefinitely. For instance, if 10−16 is the lowest
absolute value of a real number that a computer can use in �float-
ing point� algebraic operations, even a so-called “O�h�� method”
would only be able to achieve an approximation accuracy of order
�10−16. If we denote the local order of accuracy in computing the
left-hand side of Eq. �16� to be O�hi

�+1�, then this is the highest
possible order if the identity h�+1=10−16 holds. Solving this iden-

tity for � and assuming E��anl
�j��X̄˜ 1 , X̄

˜
2 , t��2� to be sufficiently

smooth, it is possible to represent this expectation locally over Ti
in terms of an interpolating polynomial of order � with �+1
interpolation points in Ti. If such an arrangement is adopted, then

one may compute E��anl
�j��X̄˜ 1 , X̄

˜
2 , t��2� anywhere in Ti based on its

known discrete values at just �+1 points. Such an arrangement

makes sense as the determination of E��anl
�j��X̄˜ 1 , X̄

˜
2 , t��2� from the

known linearized solution is quite computationally intensive.
However, in order to avoid numerical instabilities �such as
Runge’s phenomenon �33�� associated with Lagrangian interpolat-
ing polynomials, we prescribe using spline interpolations of the
appropriate order. Thus, we subdiscretize the interval Ti into �
subintervals �of equal lengths� with ��+1� equispaced points
�ti−1 and ti being two boundary points�, obtain the solution

E��anl
�j��X̄˜ 1 , X̄

˜
2 , t��2� only at those points and pass the spline inter-

polant through these points.

3 Numerical Illustrations
For purposes of illustration, we presently choose two SDOF

and one 2-DOF nonlinear oscillators with cubic nonlinearity. The
two SDOF oscillators are the hardening Duffing �HD� and the
two-well Duffing-Holmes �DH� oscillators. Taken together, these
two SDOF oscillators exhibit a large class of phenomena charac-
teristic of many higher-dimensional nonlinear dynamical systems.
The purpose behind choosing the 2-DOF example is to demon-
strate the ready applicability of the GLM to nonlinear MDOF
problems.

An SDOF Hardening Duffing Oscillator �HD� Under Additive
Noise. First consider an HD oscillator only under additive white
noise. The governing equation is of the form

ẍ + Cẋ + K1x + K2x3 = �Ẇ�t� �18�

where K1, K2, and C are positive real constants representing the
stiffness, the “strength” of nonlinearity, and the coefficient of vis-
cous damping, respectively, W�t� is a standard Brownian motion
process, and � denotes the intensity of noise. Equation �18� is
subject to the initial condition X0= �x0 , ẋ0�T. We also denote X
ª �x1 ,x2�T. Writing Eq. �18� in the Girsanov-transformed form of
Eq. �7�, the linearized SDEs and the scalar SDE corresponding to
the exponential correction process over Ti may be written as

�19�

Solutions for the linearized state X̃ª �x̃1 , x̃2�T and the correction
process y�t� presently take the form

X̃�t� = exp Ã�t − ti−1�X0 + exp Ã�t − ti−1��
ti−1

t

exp�− Ã�s − ti−1��

��0 0

0 �
�� 0

dŴ1�ṡ�
� �20a�

y�t� = exp��
ti−1

t

�− �−1K2x̃1
3�dŴ�t� −

1

2�
ti−1

t

�− �−1K2x̃1
3�2 ds�

�20b�

where Ã=� 0 1
−K1 −C� and Br�t�= � 0

�
�. The exponential solution for

y�t� has integral arguments that may be expanded in terms of
MSIs through the Ito-Taylor expansion �see Appendix�. By using
the estimator Eq. �15� we may readily obtain the expectation of a
given function f�X , t�.

Now we turn attention to the linearization method using the
subtracting set Si corresponding to the Ito-Taylor expansion of the
nonlinear vector function K2x1

3. Consider first element S1
i =

−K2x1,i−1
3 of Si and add it to the linear part of the drift al while

subtracting the same from the nonlinear part anl. The modified

drift term in the linearized velocity equation is then al�X̃ , t�=
−Cx̃2−K1x̃1−K2x̃1,i−1

3 . The term that goes into the transformed

Brownian motion is anl�X̃ , t�=−K2x1
3+K2x̃1,i−1

3 . We then have the
following incremental form for the Girsanov-linearized SDEs:

�21�

The additional scalar SDE for the correction term is

dy�t� = − �−1�K2x̃1
3 − K2x̃1,i−1

3 �y dW̄�t� �22�

This yields the solution for y�t� as

y�t� = yi−1 exp��
ti−1

t

�− �−1�K2x̃1
3 − K2x̃1,i−1

3 ��dW̄�t�

−
1

2�
ti−1

t

�− �−1�K2x̃1
3 − K2x̃1,i−1

3 ��2 ds� �23�

According to the notation in Eq. �13�, we have ̄=� 0
−K2x1,i−1

3 � and

Br�t�= � 0
�

�. Note that both the integrals in the right-hand side of
Eq. �23� are stochastic and computed using both the versions of
the GLM as described earlier. Version 1 �henceforth referred to as
GLM-I�, which uses an Ito-Taylor expansion, is presently done to
O�h4� and the modeling details of the associated MSIs are de-
scribed in the Appendix. Recall that, unlike version 1, version 2
�GLM-II� provides a so-called O�h�� solution �i.e., the accuracy
of solution is only affected by the finiteness of ensemble sizes�
and does not require computing any derivatives and MSIs.
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In Figs. 3�a� and 3�b�, we show time histories of E�x1
2� and

E�x2
2� with the two variants of GLM-I �with and without the first

element S1
i of the subtracting set leading to the corrective forcing

vector ̄1� as well as the exact stationary limits. Note that the
exact stationary �joint� density function is available in this case
through the solution of the reduced Fokker-Planck equation and is
given by �34�

p�x, ẋ� = R exp�− Cẋ2

�2 −�
0

x

C
K1q + K2q3

0.5�2 dq� �24�

where the real constant R has to be so found as to satisfy the
normalization constraint ��−�

� p�x , ẋ�dx dẋ=1. The statistical mo-
ment of any deterministic function ��x , ẋ� may then be found as
E���x , ẋ��=��−�

� ��x , ẋ�p�x , ẋ�dx dẋ. The integrations required to
find the stationary limits are presently computed using the sym-
bolic manipulator MAPLE®. In Fig. 3, we see two instances of
solutions via GLM-I without the usage of the corrective forcing
�CF�. While, in one such instance, we have an overflowing trend,
the other instance has a typical solution that tends to underflow.
The GLM-I with the CF however appears to work without nu-
merical instabilities, and the resulting solutions match well the
exact stationary limit as time progresses. Thus, unless otherwise
specified, we apply GLM-I and II with the CF from now onwards.

Figure 4 shows second moment histories of displacement and ve-
locity components via GLM-I and II when the nonlinearity param-
eter �K2� is ten times the stiffness �K1� and the additive noise
intensity ��=5.0� is very high. Also shown in Fig. 4 are the cor-
responding stationary limits. In this and many other such cases,
both the versions of GLM work accurately, even though variance
of the estimate appears to be less with GLM-II for the same en-
semble size. Thus, in all such cases, results would henceforth be
plotted with any one of the versions. It is interesting to observe
�see Eq. �24�� that K2 only affects the stationary limit for E�x1

2�t��
but not that for E�x2

2�t��. Figure 5 shows the variations of E�x1
2�t��,

as obtained through GLM-I, for different values of K2 as well as
the associated stationary limits �black and solid lines�. Time his-
tories of E�x1

2�t�� are plotted in Fig. 6 using GLM-II for different
values of the time step-size, h. Incidentally, for h=0.05, GLM-I
fails to work �as indicated in the inset� and numerical instabilities
set in for t�0.8 s or so.

An HD Oscillator Under Combined Deterministic Excitation
and Additive Noise. The governing equation is presently taken to
be in the form �9�

Fig. 3 The HD oscillator „Eq. „18……—histories of second mo-
ments: „a… E†x1

2
‡ and „b… E†x2

2
‡; C=5.0, K1=K2=100.0, �=5.0, h

=0.01, X0= ˆ0,0‰T; solid black lines indicate exact stationary
limits

Fig. 4 The HD oscillator „Eq. „18……—histories of second mo-
ments through GLM-I and II: „a… E†x1

2
‡ and „b… E†x2

2
‡; C=1.0, K1

=10.0, K2=100.0, �=5.0, h=0.01, X0= ˆ0,0‰T; solid black lines
indicate exact stationary limits
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ẍ + 2��1ẋ + 4�2�2x�1 + x2� = 4�2�3 cos�2�t� + 4�2�4Ẇ1�t�
�25�

A look at the solution for y�t� �see Eq. �13�� shows that it contains
the inverse of the diffusion coefficient �noise intensity�. Since di-
vision by a small number could cause numerical problems, it
would be interesting to see if the GLM had any instability for very
low noise intensity. Figure 7 shows plots of variance histories of
displacement and via GLM-II corresponding to the HD oscillator
of Eq. �25� with �4=0.0005 �i.e., very low noise intensity�. Here,
the sinusoidal forcing parameter �3=1.0 is so chosen that the os-
cillator exhibit a dumb-bell-shaped one-periodic solution for �4
=0 and such is structure is expected to be preserved under “small”
additive noise. Since no exact solutions are presently available,
we choose the implicit stochastic Newmark method �SNM�
�35,36� and the explicit stochastic Heun method �SHS� �5� for
purposes of comparison. Although the displacement updates via
SNM and SHS are comparable, the velocity update via SNM is

just as good as a drift-implicit Euler method, which is worse than
the SHS. As is seen from Fig. 7, while solutions via GLM and
SHS match reasonably, solutions via the SNM are too far off.
However, over most of the parameter ranges, the results through
SNM indeed match closely with those via GLM. A typical such
case is reported in Fig. 8.

A Duffing-Holmes �DH� Oscillator Under Combined Determin-
istic Excitation and Additive Noise. We now take up a DH oscil-
lator subject to a sinusoidal force and an additive white-noise
excitation. For �3=�4=0, the system has two potential wells �ba-
sins of attraction� corresponding to the two stable fixed points at
�x , ẋ�= �1,0� and �x , ẋ�= �−1,0�. This oscillator may, for instance,
be a useful model for the nonlinear dynamics of a periodically
forced buckled beam. The governing equation is

ẍ + 2��1ẋ + 4�2�2x�− 1 + x2� = 4�2�3 cos�2�t� + 4�2�4Ẇ1�t�
�26�

In the absence of the diffusion term, this oscillator exhibits a wide
variety of multiperiodic and chaotic solutions. Figure 9 shows
displacement variance histories as well as phase plots of E�x1�t��
versus E�x2�t�� as determined via GLM-I, SHS, and SNM. The

Fig. 5 The HD oscillator „Eq. „18……—E†x1
2
‡ for different values

of K2 using GLM-II; C=1.0, K1=10.0, �=0.50, h=0.01, X0
= ˆ0,0‰T; solid black lines indicate exact stationary limits

Fig. 6 The HD oscillator „Eq. „18……—histories of E†x2
2
‡ for dif-

ferent values of h using GLM-II; C=1.0, K1=10.0, K2=100.0,
F„t…=0, �=5.0, X0= ˆ0,0‰T; the solid black line indicates the ex-
act stationary limit. Inset shows that GLM-I terminates unsuc-
cessfully before 1 s for h=0.05.

Fig. 7 The HD oscillator „Eq. „25……—�1=0.25, �2=1.0, �3=1.0,
�4=0.0005, h=0.01, X0= ˆ0,0‰T; histories of „a… variance of dis-
placement and „b… variance of velocity, using GLM-II, SHS, and
SNM

892 / Vol. 74, SEPTEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



parameters �1 ,�2 ,�3 are so chosen that they belong to the chaotic
regime of the oscillator when �4=0. When the noise intensity is
small �presently �4=0.05�, the SNM again fails to work accurately
with SHS and GLM still providing a close match �Fig. 9�. How-
ever, as �4 becomes higher, SNM-based results match closely with
those via GLM and SHS �Fig. 10�.

A 2-DOF Nonlinear Oscillator Under Additive Noises. In order
to numerically demonstrate the applicability of the GLM to higher
dimensional oscillators, we choose a 2-DOF nonlinear oscillator
driven by additive white noises and described by

ẍ1 + C1ẋ1 + �K1 + K2�x1 − K2x3 + �x1
3 = �1Ẇ1�t�

ẍ3 + C2ẋ3 + �K2 + K3�x3 − K2x1 = �2Ẇ2�t� �27�

The derivation of the GLM for this oscillator follows precisely
from the general formulation recorded in the previous section.
However, for completeness, we retrace the main steps briefly.

Thus, introducing the state space vector X̄ª �x1
�1� ,x2

�1� ,x1
�2� ,x2

�2��T,
the displacement vector X1ª �x1

�1� ,x1
�2��T and the velocity vector

X2ª �x2
�1� ,x2

�2��T, the incremental form of the above SDE-s is writ-
ten as

dx1
�1� = x2

�1� dt

dx2
�1� = �− C1x2

�1� − �K1 + K2�x1
�1� − ��x1

�1��3 + K2x1
�2��dt + �1 dW1�t�

dx1
�2� = x2

�2� dt

dx2
�2� = �− C2x2

�2� − �K2 + K3�x1
�2� + K2x1

�1��dt + �2 dW2�t� �28�

These SDEs are subject to the initial condition vector X̄0

= �x10
�1� ,x20

�1� ,x10
�2� ,x20

�2��T. Now in order to derive the GLM-based lin-
earized form �as in Eq. �13�� over the ith interval Ti, we need to
construct the corrective forcing ̄1

�i� by using the first element S1
i of

the subtracting set Si. Accordingly, the linearized and residual
�nonlinear� parts of the velocity drift corresponding to the second
scalar SDE in Eq. �28� are given by

al
�2��X̄˜ ,t� = − C1x̃2

�1� − �K1 + K2�x̃1
�1� + K2x̃1

�2� − ��x̃1,i−1
�1� �3

and anl
�2��X̄˜ ,t� = − ��x̃1

�1��3 + ��x̃1,i−1
�1� �3 �29�

Then, the GLM-based linearized SDE-s are given by

Fig. 8 The HD oscillator „Eq. „25……—histories of „a… variance of
displacement and „b… variance of velocity using GLM-II and
SNM; �1=0.25, �2=1.0, �3=42.0, �4=1.0, h=0.01, X0= ˆ0,0‰T Fig. 9 The DH oscillator „Eq. „26……—histories of „a… variance of

displacement and „b… phase plot of E†x2‡ and E†x1‡ using GLM-
II, SNM and SHS; �1=0.25, �2=0.5, �3=0.5, �4=0.10, h=0.01, X0
= ˆ0,0‰T
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�30a�

where W̄2�t�=W2�t�. The scalar SDE governing the Radon-
Nikodym derivative is

dy�t� = − �1
−1���x̃1

�1��3 − ��x̃1,i−1
�1� �3�yd W̄1�t� �30b�

Solutions for X̄
˜ �t� and the Radon-Nikodym derivative turn out to

be

X̄
˜

= exp�Ã�
ti−1

t

ds�X̄
˜

0 + exp�Ã�
ti−1

t

ds��
ti−1

t

exp�− Ã�
ti−1

s

ds1�
�

0 0 0 0

0 − ��x̃1,i−1
�1� �3 0 0

0 0 0 0

0 0 0 0
�ds + exp�Ã�

ti−1

t

ds�

�� ti−1

t exp�− Ã�
ti−1

s

ds1�
0 0 0 0

0 �1 0 0

0 0 0 0

0 0 0 �2

��
0

dW̄1�s�
0

dW̄2�s�
�

�31a�

y�t� = exp��
ti−1

t

�− �1
−1���x̃1

�1��3 − ��x̃1,i−1
�1� �3��dW̄1�s�

−
1

2�
ti−1

t

��1
−1���x̃1

�1��3 − ��x̃1,i−1
�1� �3��2 ds� �31b�

For i=1, we have the initial condition X̄
˜

0= �x1,0
�1� ,x2,0

�1� ,x1,0
�2� ,x2,0

�2��T

and the system coefficient matrix for the linearized vector SDE is
given by

Ã = 
0 1 0 0

− �K1 + K2� − C1 K2 0

0 0 0 1

K2 0 − �K2 + K3� − C2

�
Recall that the expectation of a given scalar function f�X̄ , t� may

be computed as E�f�X̄ , t��=E�y�t�f�X̄˜ , t��.

Fig. 11 The 2-DOF oscillator „Eq. „27……—second moment his-
tories using GLM-I, GLM-II, and SNM: „a… E†x2

2
‡ and „b… E†x3

2
‡;

C1=C2=5.0, K1=K2=K3=100.0, �=100.0, �1=�2=5.0, h=0.01,
X̄0= ˆ0,0,0,0‰T

Fig. 10 The DH oscillator „Eq. „26……—histories of variance of
displacement using GLM-II, SNM and SHS; �1=0.25, �2=0.5, �3
=0.5, �4=1.0, h=0.01, X0= ˆ0,0‰T
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Figure 11 shows a couple of second moment histories via
GLM-I and GLM-II over 0–20 s with a step size h=0.01. While
the closeness of solutions through the two versions of the GLM
appears to be impeccable over this interval, the power of GLM-II
over GLM-I is brought out if the same histories are plotted over a
much longer interval, as in Fig. 12�a�. Here, we have used the
same step size and plotted the histories of E�x3

2�t�� over t
� �0,500� via the two versions of the GLM. While GLM-II shows
no numerical instability, the solution through GLM-I clearly ex-
hibits an overflowing trend and becomes unacceptably inaccurate.
However, as shown in Fig. 12�b�, GLM-I works well even over
such a long interval if the step size is reduced �in this case
halved�.

4 Conclusions
A weak form of linearization method, applicable to nonlinear

oscillators under additive stochastic excitations, is developed
based on a Girsanov transformation of probability measures. The
proposed GLM suffers from no dimensionality curse and has the
potential to achieve an accuracy of approximation that is unparal-
leled by any other existing method to the authors’ knowledge.
However, a major problem lies with handling the exponential cor-
rection term �martingale�, which shows high sensitivity to how the

linearization is being attempted and often exhibits numerically
spurious oscillations. As a result, the GLM-based solution often
tends to overflow or underflow as time progresses. In order that
such numerical obstacles are virtually removed, a modification is
effected in the linearized form and the process of linearization is
employed over small intervals of time, as in a numerical method.
It is this latter strategy that imparts a numeric-analytic character to
the GLM. Two different versions of the GLM are presented in this
study. The first version requires that the argument of the exponen-
tial martingale be evaluated through a stochastic Taylor expan-
sion, which in turn necessitates the evaluation of multiple stochas-
tic integrals along with the attendant requirement that the
nonlinear terms be sufficiently differentiable. The second version,
on the other hand, employs a new Monte Carlo–based strategy
and evaluates the exponential correction to �virtually� any desired
order or accuracy. Moreover, it requires no Taylor expansion or
differentiability assumptions on the nonlinear terms. The GLM is
numerically illustrated for a few SDOF and MDOF nonlinear os-
cillators with polynomial nonlinearity. Comparisons of the GLM-
based solutions with exact stationary solutions, whenever avail-
able, are also provided.

Since the GLM propagates the solution purely through expo-
nential transformations, it is readily exploitable as a Lie group
method to help preserve any dynamical invariants that may be of
interest. The GLM is also modifiable to achieve importance sam-
pling and variance reduction with high precision. These issues
constitute interesting elements of a future study.
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Appendix

Note that the first integral �0
t �−�−1�K2x̃1

3−K2x̃1,i
3 ��dŴ1�s� on the

right-hand side of Eq. �23� is an Ito integral and we will expand it
using an Ito-Taylor expansion in terms of MSIs. By application of
linearity property of Ito integral, we get

�
0

t

�− �−1�K2x̃1
3 − K2x̃1,i

3 ��dŴ1�s� = − �1
−1K2�

0

t

�x̃1
3�dŴ1�s�

+�
0

t

��−1K2x̃1,i
3 �dŴ1�s�

�A1�

Now we write the first term on the right-hand side of Eq. �A1� as

− �1
−1K2�

0

t

�x̃1
3�dŴ1�s� = − �1

−1K2 � SI1

Applying Ito-Taylor expansion to SI1 repeatedly, we get

Fig. 12 The 2-DOF oscillator „Eq. „27……—plots of E†x3
2
‡ using

GLM-I and GLM-II for step sizes „a… h=0.01 and „b… h=0.005;
C1=C2=5.0, K1=K2=K3=100.0, �=100.0, �1=�2=5.0, X̄0
= ˆ0,0,0,0‰T
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⇒SI1 =�
0

t

x̃10
3 dŴ1�s� + 3�

0

t�
0

s

x̃10
2 x̃20 ds1 dŴ1�s� + 3�

0

t�
0

s

�− K2�x̃10,i
3 ds1 dŴ1�s� + 6�

0

t�
0

s�
0

s1 �x̃10x̃20
2 +�

0

s2

�x̃20
3 + 2x̃10x̃20�− K1x̃10

− C1x̃20 − K2x̃10,i
3 � + x̃10�1

2�ds3 + 2�1�
0

s2 �x̃10x̃20 +�
0

s3

�x̃20
3 + x̃10�− K1x̃10 − C1x̃20 − K2x̃10,i

3 ��ds4

+ x̃10�
0

s3

�1 dŴ1�s4��dŴ1�s3��ds2 ds1 dŴ1�s� − 3K1�
0

t�
0

s�
0

s1 �x̃10
3 + 3�

0

s2

x̃10
2 x̃20 ds3�ds2 ds1 dŴ1�s�

− 3C1�
0

t�
0

s�
0

s1 �x̃10
2 x̃20 +�

0

s2

�2x̃10x̃20
2 + x̃10

2 �− K1x̃10 − C1x̃20 − K2x̃10,i
3 ��ds3 + �1�

0

s2 �x̃10
2

+ 2�
0

s3

x̃10x̃20 ds4�dŴ1�s3��ds2 ds1 dŴ1�s� + 3�1�
0

t�
0

s�
0

s1 �x̃10
2 + 2�

0

s2 �x̃10x̃20 +�
0

s3

�x̃20
3 + x̃10�− K1x̃10 − C1x̃20 − K2x̃10,i

3 ��ds4

+ x̃10�
0

s3

�1 dŴ1�s4��ds3�dŴ1�s2�ds1 dŴ1�s� + ¯ �A2�

Now, the other integral on the right-hand side of Eq. �23� may also be expanded in a similar way as

1

2�
0

t

�− �−1�K2x̃1
3 − K2x̃1,i

3 ��2 ds =
1

2
�1

−2K2
2�

0

t

x̃1
6 ds +

1

2
�1

−2K2
2x̃1,i

6 �
0

t

ds − �1
−2K2

2x̃1,i
3 �

0

t

x̃1
3 ds =

1

2
�1

−2K2
2 � SI2 +

1

2
�1

−2K2
2x̃1,i

6 t − �1
−2K2

2x̃1,i
3

� SI3

Applying Ito-Taylor expansions to SI2 and SI3 repeatedly, we get

SI2 =�
0

t

x̃10
6 ds + 6�

0

t�
0

s

x̃10
5 x̃20 ds1 ds + 6�

0

t�
0

s

�− K2�x̃10,i
3 ds1 ds + 30�

0

t�
0

s�
0

s1 �x̃10
4 x̃20

2 +�
0

s2

�4x10
3 x̃20

3 + 2x̃10
4 x̃20�− K1x̃10 − C1x̃20

− K2x̃10,i
3 � + x̃10

4 �1
2�ds3 +�

0

s2

2x̃10
4 x̃20�1 dŴ1�s3��ds2 ds1 ds − 6K1�

0

t�
0

s�
0

s1 �x̃10
6 + 6�

0

s2

x̃10
5 x̃20 ds3�ds2 ds1 ds

− 6C1�
0

t�
0

s�
0

s1 �x̃10
5 x̃20 +�

0

s2

�5x̃10
4 x̃20

2 + x̃10
4 �− K1x̃10 − C1x̃20 − K2x̃10,i

3 ��ds3 +�
0

s2

x̃10
5 �1 dŴ1�s3��ds2 ds1 ds + 3�1�

0

t�
0

s�
0

s1 �x̃10
2

+�
0

s2

2x̃10x̃20 ds3�dŴ1�s2�ds1 ds + . . . �A3�

SI3 =�
0

t

x̃10
3 ds + 3�

0

t�
0

s

x̃10
2 x̃20 ds1 ds + 3�

0

t�
0

s

�− K2�x̃10,i
3 ds1 ds + 6�

0

t�
0

s�
0

s1 �x̃10x̃20
2 +�

0

s2

�x̃20
3 + 2x̃10x̃20�− K1x̃10 − C1x̃20 − K2x̃10,i

3 �

+ x̃10�1
2�ds3 +�

0

t

2x̃10x̃20�1 dŴ1�s3��ds2 ds1 ds − 3K1�
0

t�
0

s�
0

s1 �x̃10
3 + 3�

0

s2

x̃10
2 x̃20 ds3�ds2 ds1 ds − 3C1�

0

t�
0

s�
0

s1 �x̃10
2 x̃20

+�
0

s2

�2x̃10x̃20
2 + x̃10

2 �− K1x̃10 − C1x̃20 − K2x̃10,i
3 ��ds3 +�

0

t

x̃10
2 �1 dŴ1�s3��ds2 ds1 ds + 3�1�

0

t�
0

s�
0

s1 �x̃10
2

+�
0

s2

2x̃10x̃20 ds3�dŴ1�s2�ds1ds + ¯ �A4�

The MSIs present in SI3 are the same as those in SI2. The MSIs
are zero-mean Gaussian variables. See Roy and Dash �9� for de-
tails of evaluating the covariance matrix for MSIs.
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Stress–Strain Relationship for
Metal Hollow Sphere Materials
as a Function of Their Relative
Density
The stress–strain relationship for uniaxial compression of a metal hollow sphere material
in large strains is obtained using a simplified model for the spheres’ deformation within
a 3D block assuming a hexagonal packing pattern. The yield strength and material strain
hardening are obtained as functions of the relative density in two characteristic loading
directions. The expression for the stress–strain relationship consisting of quadratic and
linear terms with respect to the relative density is linked to the partitioning of the defor-
mation energy during compression. The theoretical predictions are compared with limited
test results on mild steel hollow sphere material and finite element simulation results
obtained by our group. �DOI: 10.1115/1.2712235�

Keywords: metallic foam, plastic deformation, uniaxial loading, yield strength, strain
hardening, relative density

1 Introduction
The properties of metallic cellular materials �honeycomb, foam,

hollow sphere agglomerate� have been studied extensively in re-
cent years �1� owing to the wider engineering applications in
lightweight structures for impact energy absorption �2�, acoustic
wave attenuation, etc. A large number of experimental, numerical,
and analytical studies on the behavior of cellular materials have
been reported in the literature �e.g., see Refs. �3,4��. However,
relatively little is published on the prediction of the properties of
metal hollow sphere �MHS� agglomerates, especially with respect
to their stress–strain behavior in large strains due to the complex-
ity of the spheres’ deformation within a material block.

Metal foams made from hollow spheres offer low density with
reasonably good energy absorption and high strength to weight
ratios. Sintered metal hollow sphere foams have a certain volume
fraction of enclosed pore space inside the spheres, but also have
interstitial porosity between the sintered spheres appearing as a
mixed open/closed-cell cellular solid. The key physical attributes
of the MHS material, which are relevant to their mechanical be-
havior, include the characteristic sphere dimensions �diameter and
wall thickness�, wall material properties, and the relative density,
�* /�s. The latter is affected by both the relative density of indi-
vidual spheres as well as the packing pattern of spheres in the
cellular solid. Unlike foams that are processed using expansion
methods or injection of molten metal, hollow sphere metal foams
may be processed either as random or ordered �5�, leading to
isotropic or anisotropic macroscopic elastic–plastic behavior, re-
spectively. In other words, it is likely that a higher control on the
mechanical properties of the MHS materials can be achieved in
comparison to the open or closed cell foams.

Due to the particular deformation mechanism of the spheres
within a material block, a stress enhancement was experimentally
observed �6,7� when the deformation progresses, which is not
typical for the other types of open or closed cell metal foams.
Among the few studies on the characterization of MHS materials,

most thorough analyses of the material properties are published in
Refs. �8–11� but they are exclusively concerned with the elastic
modulus and the initial yield strength despite the fact that these
materials manifest a noticeable strain hardening �6,7� before den-
sification. The hardening is an inherent property of the metal hol-
low sphere material due to the deformation mechanism of the
spheres and reflects the hardening feature of the force–
displacement characteristic of a single hollow sphere under
uniaxial compression �12�. In this case, the assumption of a rela-
tively flat stress plateau cannot adequately characterize the MHS
material. The present study aims to obtain the stress–strain rela-
tionship in large strains and describe the material hardening as a
function of the relative density. A rigid, perfect-plastic model is
assumed for the base material, which is a reasonable approxima-
tion of typical mild steel in large strains.

2 Simplified Analytical Model

2.1 A Model Analysis of the Crushing Mechanism Based
on Representative Blocks. Although the real cellular materials
have a somewhat random arrangement of the cells, it is still es-
sential to analyze the major mechanisms of deformation in regu-
larly packed spheres in order to understand the influence of the
various parameters on the response of these materials to different
loading conditions. The actual structure of a three-dimensional
�3D� array of hollow spheres can be replaced by equivalent struc-
tural units with regular arrangements, which allow for analytical
modeling.

For the present purpose of an analytical formulation, it is an-
ticipated that a hexagonal arrangement of the spheres could be a
realistic idealization of a MHS material formed by sintering tech-
nology �Fig. 1�a��. Figure 1�b� shows a group of hexagonally
packed spheres where two characteristic loading planes are appar-
ent and structurally representative blocks in this material are
marked in the PP1P2 plane and the x-z plane, respectively. Due to
the symmetry, these blocks are further reduced as shown in Figs.
2�a� and 2�b�. The model representing loading perpendicular to
the X-Y plane �in the Z direction, FCC pattern� consists of one
half rigid hemisphere on the top and three deformable 1/3 hemi-
spheres underneath it, while symmetric boundary conditions are
applied �Fig. 2�a��. The model representing loading in the z direc-
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tion �HCP pattern� consists of 1 /2 rigid hemisphere on the top and
four deformable 1/4 hemispheres underneath it when assuming
symmetric boundaries as well �Fig. 2�b��.

The large deformation of a thin-walled sphere or a single
spherical shell, known as a typical post-buckling problem, has
received attention since the 1960s; see e.g., Leckie and Penny
�13�, Morris and Calladine �14�, Updike �15�, and de Oliveira and

Wierzbicki �16�. However, although many interesting phenomena
have been explored for the quasi-static and dynamic deformation
of 1D and 2D ring arrays �17,18�, very few attempts have been
made to study the 1D or 2D sphere arrays. Recently, Ruan et al.
�12� presented experimental and theoretical analyses on the com-
pression of 1D and 2D arrays of hollow spheres using noncon-
nected ping-pong balls, and showed that the load–deformation
curves of ball arrays with either square or hexagonal packing pat-
terns can be predicted by superposing a number of 1D chains.

The deformation of a 3D array of hollow spheres in the MHS
material obviously depends on the connections between the
spheres and it is different for each packing pattern �8–11�. The
solid connection between the spheres makes the response unlike
the simple snap-through deformation in a single sphere or in an
array of nonconnected spheres �12� by manifesting much higher
initial strength. The full modeling of the deformation process cer-
tainly involves numerical simulations using large models �8–11�,
which makes the analysis in large strains difficult.

Some simplifying assumptions are made in Ref. �19� in order to
facilitate an analytical analysis of the deformation of MHS mate-
rials with a regular structure. A structural approach using the con-
cept of an equivalent structure is employed to describe the large
plastic deformations during the post-collapse process under com-
pression when the spheres have point connections between them.
In the theoretical analysis, the deformation of the representative
block is analyzed when assuming that the upper layer consists of
undeformable spheres while the spheres in the lower layer are
deformable.

Due to the symmetry, only one-third or one-quarter of the de-
formable hemisphere is considered and the deformation is then
described by the deformation of three characteristic lines: central
line �C�, middle line �M�, and symmetry line �S�, see Figs. 2�c�
and 2�d�. In these figures, points D1 and D2 mark the positions on
the lower sphere, where the upper one makes its first touch on the
C and M lines, respectively. For both structural models, the com-
pression causes deformation of the central line �C line� at the first
instant of contact between the layers followed by the deformation
of the middle line �M line� while the S line is never in contact
with the upper sphere during deformation. The deformation of the
S line is caused by the downward displacement of the sphere with
fixed connection points between the neighboring spheres. Varia-
tion of the contact angles, �T, and contact radii, RT, are shown in
Figs. 3�c� and 3�d� for the FCC and HCP patterns, respectively.
The contact radii characterize the cross section of the upper sphere
obtained by an intersection with a vertical plane at the point of
contact with the bottom �deformable� sphere. The contact angles
characterize the contact point on the deformable sphere in the
plane of the corresponding characteristic line. The particular val-
ues for the M line, RT=RM and �T=�0M, are marked in both
figures.

The construction of the geometrical profiles of the deformed
characteristic lines due to the vertical displacement, �, is shown in
Fig. 3. It is anticipated that the formation of rolling plastic hinges
�14� for lines C, M, S is the basic mechanism of deformation. An
additional stationary hinge is formed at the equator of the sphere
at the deformed S line. It is assumed further that the radii of the
concave and convex curves with centers O1 and O2 are propor-
tional, i.e., rO1

=krrO2
. The condition for unextensional line S is

satisfied by varying the hinge angle � while the same condition
for characteristic lines C and M is satisfied by varying the contact
point between the spheres �point E in Fig. 3�b� defined by angle
��. The details for the calculation of the deformed shapes of these
lines are given in Ref. �19�.

The following dependences of the plastic energy, D, during
compression of the representative blocks hold

D�C� = fC�krC,�C� , �1a�

D�M� = fM�krM,�M� , �1b�

Fig. 1 „a… MHS material; and „b… Hexagonally packed spheres

Fig. 2 Structural representative blocks: „a… compression in
the Z direction; „b… compression in the z direction; and „c…, „d…
characteristic lines of the deformation mechanism
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D�S� = fS�krS,�� �1c�

where the free parameters for the radii of the rolling hinges, krC,
krM, krS, allow for the minimization of the deformation energy
under the general assumptions of the model.

The proposed model for deformation of a sphere by a snap-
through mechanism at different positions on the surface simplifies
the actual deformation of a sphere while retaining the character-
istic features of the hollow sphere response inside a MHS material
when subjected to uniaxial compression.

2.2 Shapes of the Characteristic Lines due to Uniaxial
Compression of the Representative Blocks. The definitions for
the engineering stress and strain of the MHS material are based on
the response of a representative block to a uniaxial compression in
the corresponding direction. The elastic deformations of the
spheres are neglected and rigid, perfectly plastic property is as-
sumed for the base material. Since the input energy to the system,
W, �i.e., the work done by the external forces� is equal to the
plastic dissipation energy, D

W = D , �2a�

W = F� , �2b�

where � is the axial shortening of the representative block in the
direction of loading. The collapse force, F, is determined as

F = dD/d��� . �3�
It is assumed that the plastic energy dissipated due to the de-

formation of a hemisphere is described by the deformation of
those three characteristic lines when the plastic strains are spread
within segments � /6 for the representative block in Fig. 2�a� and
� /8 for the representative block in Fig. 2�b�, respectively. The
variations of the contact angles �T and contact radii, RT, within
the corresponding segments �C, M, and S� shown in Figs. 3�c� and
3�d� imply that the selected lines are representative for those seg-
ments. Therefore, the dissipated energy is determined as

D = f�DC,DM,DS� = 2�R
DC + 2DM + DS

4
= �R

DC + 2DM + DS

2

�4�

in either direction of uniaxial loading of the MHS material with
hexagonal packing, where

DC = DCm + DCb, �5a�

DM = DMm + DMb, �5b�

DS = DSm + DSb �5c�

are the corresponding plastic energies. Subscripts m and b refer to

Fig. 3 Description of the deformed shapes of the characteristic lines: „a… S line; „b… C line and M line „�0 and
� stand for the initial and current angles associated with either C line or M line…; and „c…, „d… variation of the
radii of the contact circles and contact angles for the FCC and HCP pattern, respectively; the sectors on a
sphere associated with the C, M, and S line are marked
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the bending and membrane energy, respectively.
The bending energies associated with S, C, and M lines are

DSb/�2�R� = M0�� + � 1

krSr̄S

+ 1��
CD

r̄cds̄ + � 1

r̄S

− 1��
DB

r̄cds̄	
�6a�

DCb/�2�R� = M0� 2

R�
DE

rcds̄ + � 1

krCrC
−

1

R
��

EF

rcds̄ + � 1

rC

+
1

R
��

FG

rcds̄	 , �6b�

DMb/�2�R� = M0�� 1

R
+

1

R2
��

DE

rcds̄ + � 1

krMrM
−

1

R
��

EF

rcds̄

+ � 1

rM
+

1

R
��

FG

rcds̄	 �6c�

where rS, krS, rS are the curvature radii of the segments C�D� and

D� B� in Fig. 3�a�; rc is the current radius of the deformable sphere,
r̄c=rc /R; and ds denotes an infinitesimal arc length, s̄=s /R. The
membrane energies are calculated as

Dm/�2�R� = M0
4R

t �
S


r̄c − r̄0
ds̄ �7�

where r̄0=r0 /R, r0 is the initial radius of the deformable sphere;
and Dm stands for the energies DSm, DCm, or DMm associated with

the corresponding segments S�.
Since the total deformation energy D is not uniquely defined

but depends on the parameters krC, krM, krS, the collapse force is
defined as

F = � dW

d���
�

min
= �dD�krC,krM,krS�

d��� 	
min

= ���dD�krC,krM,krS�
d��� 	

min
krC

�
min
krM

�
min
krS

�8�

when varying parameters kr consecutively.
The hollow spheres within the representative block are con-

strained by the configuration of the neighboring spheres, so that
the optimization of the crushing force has to be done under some
restrictive conditions for the displacements associated with the
characteristic lines. Due to the repeatability of the representative
blocks, purely geometrical conditions should be satisfied

� − � 	 0 �9a�

�R + r�cos � + r 
 R + g for � = � �9b�

for C and M lines �angles � and � are shown in Fig. 3�b��, where
g is the gap between the spheres �Fig. 3�b��, namely

gCZ = R�2 sin �0C − 1� , �10a�

gMZ = 0, �10b�

gCz = R�1 − 1/2� , �10c�

gMz = R�1 − cos��/8�� �10d�

for the representative blocks shown in Figs. 2�a� and 2�b�. The
condition associated with S line �Fig. 3�a�� is

2R sin��

4
−

�S

2
�cos��

4
+

�S

2
+ �� 	 g �11�

where

gSZ = R�2sin �0C − 1� , �12a�

gSz = 0. �12b�

The optimal values for the proportionality coefficients kr are ob-
tained as �19�

krC = 1/�0.01 + 0.6hC/R� �13a�

krM = 1/�0.01 + 0.4hM/R� �13b�

krS = 1/�0.01 + 0.2hS/R� �13c�

krC = 1/�0.01 + 0.4hC/R� �14a�

krM = 1/�0.01 + 0.4hM/R� �14b�

krS = 1/�0.01 + 1.6hS/R� �14c�

for compression in the Z and z directions, respectively, when sat-
isfying conditions �10�–�13� and where

hC = R�cos �0C − cos �C� �15a�

hM = R�cos �0M − cos �M� �15b�

hS = R�cos �0S − cos �S� �15c�

are the displacements of the contact points �point D in Fig. 3�b�
for C and M lines and point C in Fig. 3�a� for S line�; �0 and �
are the initial and current angles associated with the lines.

The engineering stress for the MHS material is defined using
the force–displacement behavior of the representative blocks

�FCC
* = FFCC/AFCC �16a�

�FCC = �FCC/d0,FCC �16b�

�HCP
* = FHCP/AHCP �17a�

�HCP = �HCP/d0,HCP �17b�

where d0,FCC=2R2/3 is the initial vertical distance between the
centers of two neighboring layers of spheres and AFCC=2R23 is
the area occupied by the representative block in Fig. 2�a�, but
d0,HCP=R2, AHCP=4R2 for the representative block in Fig. 2�b�.
Deformed characteristic lines obtained for the optimal values of kr
are shown in Figs. 4�a� and 4�b� for 25% strain when compression
is in the Z and the z directions, respectively.

2.3 FE Model for the Verification of the Crushing
Mechanism. The finite element model shown in Fig. 2�a� is con-
structed to verify the analytically obtained shapes of the charac-
teristic lines. The finite element code ABAQUS 6.4 is used and an
automatic meshing with the triangular S3R shell elements is ap-
plied assuming a small bonding angle �1 deg approximately� be-
tween the spheres. �The bonding angle  is referred to as a half of
the connecting neck.� 5400–6800 nodes in one hollow sphere are
used after the mesh convergence analysis. For the purpose of the
analysis, it is assumed that the upper hemisphere of the model
�Fig. 2�a�� is almost undeformable by prescribing a large elastic
modulus, while the other parts of the block have elastic–plastic
material properties. The representative block is placed between
two rigid planes: the bottom one serves as a fixed boundary
whereas the top one serves as the punch, i.e., only the displace-
ment along the vertical direction is allowed, which is achieved by
prescribing a constant low velocity to a large mass. The “hard
contact” algorithm in ABAQUS is adopted to describe the normal
properties of all the contacts �including the contacts between the
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rigid plates and the spherical shells, the contacts between the
spherical shell parts themselves�, whereas the tangential behavior
is defined as frictionless. Symmetry boundary conditions are ap-
plied with respect to the vertical side faces, which constrained the
transverse expansion �or shrink� of the representative block.

The radius and wall thickness of the spheres are 1.5 mm and
0.049 mm, respectively. The numerically obtained shapes of the
characteristic lines for loading in the Z direction and the model
predictions are compared in Fig. 4�c� for equal displacements of
the top of the deformable sphere, where a reasonable overall
agreement is observed, although a somewhat stiffer response is
analytically predicted. The stiffer response is mainly due to the
assumption of inextensibility of the C line and the no slippage
constrained for the M line in the model. During the actual contact
between the spheres some slippage between the spheres does oc-
cur at the location of the M line.

2.4 Relationship Between the Nominal Stress and Material
Density. The structural models shown in Fig. 3 are used to calcu-
late the stress–strain response for different ratios t /R between 0.01
and 0.073; i.e., the relative density

�*

�S
= 0.74� t

R
��3 − 3� t

R
� + � t

R
�2	 �18�

is between 0.021 and 0.15 for a hexagonal packing arrangement.
Nondimensional stress–strain curves for several densities are
shown in Fig. 5.

As an upper bound approach, the present model cannot predict
correctly the stresses for small strains, so that the initial parts of
these curves should be excluded from the analysis. As an illustra-
tion, the stress–strain curve obtained from the numerical simula-
tion of the deformation of a sphere due to the compression by an
undeformable sphere in the Z direction �Fig. 4�c�� is shown in Fig.
5�b�. This figure demonstrates the agreement between the analyti-
cal model and numerical results for strains larger than about 0.03

for the particular case of �* /�c=0.052. The elastic response given
by Gasser et al. �11� is superposed in Figs. 5�a� and 5�b� on the
predicted plastic stresses in order to estimate the validity of the
present model. The elastic modulus is calculated as �11�

E*

E
= �0.118 + 0.826

t

R
� t

R
�19�

for the present model with a point connection between the
spheres. The elastic slopes in Figs. 5�a� and 5�b� are plotted for
E /�0=582.4. In these figures, points A1–A4 mark the stresses
corresponding to the initial strains, from which the rigid-plastic
analysis begins to be valid. Similar to solid materials, the elastic
strains due to uniaxial compression are proportional to the ratio
E /�0 and one can see that the present model overestimates the
stresses for small strains; however, the stress level, which corre-
sponds to strains around 0.05, can be considered to give reliable
stress estimates. In the following, the stress associated with the
above strain is regarded as the yield strength, which corresponds
to the yield strength for open or closed cell foams.

Since a structural approach is used to obtain the stress–strain
response of the idealized material model, it is worthwhile to relate
the nominal stress and initial material density using the character-
istics of the deformation mechanism. The work done by the ex-
ternal forces is F�=�*�R3C1 and hence the energy balance equa-
tion can be rearranged as

�*� =
1

C1R3 �Db + Dm� =
1

C1R3 ��0t2RC2��� + �0tR2C3����

�20�

where C1 is a characteristic constant of the particular representa-
tive block, � is the uniaxial strain, and Db and Dm are obtained
from Eqs. �5� and �6�. Equations �20� can be expressed in an
incremental form

Fig. 4 Predicted shapes of the deformed characteristic lines at
25% strain: „a… compression in the Z direction „FCC…; „b… com-
pression in the z direction „HCP…; and „c… comparison between
the analytical model and finite element simulation „compres-
sion in the Z direction…

Fig. 5 Stress–strain curves: „a… compression in the z direc-
tion; and „b… compression in the Z direction; the numerical re-
sults „as described in Sec. 2.3… are shown for �* /�c=0.052
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�*�� =
1

R3C1
���0t2RC2��� + �0tR2C3���� �21a�

and the stress–strain relationship can be decomposed into two
terms

�*���
�0

=
d

d�
�C2���

C1
� t

R
�2

+
C3���

C1
� t

R
�	 � �P1���� t

R
�2

+ P2���� t

R
�	 . �21b�

One can see that the term with �t /R�2 corresponds to the contri-
bution of the bending energy while the term with �t /R� is associ-
ated with the membrane energy.

It is further concluded that the ratio t /R can be approximated
with sufficient accuracy by a linear function of the relative density
as

t/R = 0.4983�*/�s �22�

where �* /�s is defined by Eq. �18�. Then the stress can be decom-
posed into two parts proportional to ��* /�s�2 and ��* /�s� when
substituting Eq. �22� into Eq. �21b�. The particular stress strain
relationships for the two characteristic directions of loading are
obtained as

�FCC
* ���
�0

= 0.071�−0.6295��*

�s
�2

+ 0.2674�0.1608��*

�s
�, � � 0.03

�23a�

in the Z direction �FCC� and

�HCP
* ���
�0

= 0.0519�−0.5958��*

�s
�2

+ 0.4652�0.4318��*

�s
�, � � 0.03

�23b�

in the z direction �HCP�.
The constrained deformation of the spheres within the MHS

material leads to an increase of the contribution of the membrane
deformations while the deformation progresses. This is particu-
larly true for spheres with smaller ratios t /R �smaller relative den-
sity�. Ratios between the �bending and membrane� stresses asso-
ciated with the energy partitioning, �b

* /�m
* , in the two

characteristic directions of loading are shown in Fig. 6 for two
material densities.

The proposed stress–strain relationships given by Eqs. �23� can
also be used to verify the yield strength of tested MHS materials
when substituting strain values between 0.03���0.1. The
stresses at �=0.05 for compression in the Z direction �FCC� and z
direction �HCP� are depicted in Fig. 7 as functions of the relative
density representing the yield strength in the characteristic direc-
tions of loading. Numerical simulations reported in Ref. �20� also
established a relationship between the sphere characteristic ratio

t /R and the yield strength as �Y
* /�0=1.08�t /R�1.25 for loading in

the Z direction �FCC� when modeling a finite connection of 5 deg
between the spheres. It is anticipated that if the bonding neck is
small and if the contribution of the bonding material to the rela-
tive density is negligible, the relation between the t /R ratio and
the relative density, represented by Eq. �18�, is valid. The yield
strength according to Ref. �20� but as a function of ��* /�s� is
shown in Fig. 7. The yield strength as a function of the relative
density is also plotted for open and closed cell foam materials as
stated in Ref. �9�. As expected, the yield strength of the MHS
material in both directions of loading is between the theoretical
predictions for the open and closed cells.

3 Comparison With Experimental Results and Discus-
sion

3.1 Actual Material Density Versus Model Parameters.
Some quasi-static experimental results on MHS materials reported
in Ref. �7� are used here to verify the consistency of the predic-
tions for the stress–relative density dependences. The experimen-
tal stress–strain curve presented in Fig. 8�a� pertains to a quasi-
static compression of a MHS material made of steel hollow
spheres ��0=344 MPa, R=1.5 mm, t=0.049 mm� connected by
sintering process. The measured averaged bonding angle was ap-
proximately 5 deg, which makes this material suitable for an
analysis by the present model. A nearly hexagonal packing of the
spheres is likely to be achieved by the sintering technique, so the
theoretical relative density, calculated from Eq. �18�, is obtained
as �* /�s=0.071. However, the actual relative material density is
smaller, namely 0.052, due to some larger gaps between the
spheres �Fig. 9�a��

The reduced density of the MHS material due to the existing
gaps/voids can be modeled by introducing “regular gaps” between
the spheres as shown in Fig. 9�b� for compression in the Z direc-
tion �fcc�. In this way, an adequate model for the actual material

Fig. 6 Ratios between the „bending and membrane… stresses
associated with the energy partitioning, �b

* /�m
* , in the two char-

acteristic directions of loading

Fig. 7 Yield strength for various cellular solids; �Y
* =�*

„�
=0.05… for the MHS material
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density can be achieved by controlling the distance between the
spheres, �. The constraints for the deformation of the spheres
become weaker, due to the increased gaps, while Eqs. �10a�,
�10b�, and �12a� become

gCZ = �R + �/2��2 sin �0C − 1� , �24a�

gMZ = �/2, �24b�

gSZ = �R + �/2��2 sin �0C − 1� . �24c�
Variation of the gaps between the spheres with the reduction of

the material density for a MHS material with original � /�*

=0.071 �t /R=0.033� is shown in Fig. 9�c� �the rising curve�. The
falling curve in this figure shows the increase of the contact radius
associated with the M line �RT=RM� upon the sphere’s compac-
tion. �See the Appendix for the calculation of the contact radius RT
and contact angles.� A regular pattern for the arrangement of the
spheres is assumed, so that the analysis based on a representative
block remains valid when applying the optimization procedure
given by Eq. �8�. Note that the characteristic radius of a represen-
tative block for the stress definition is now R+� /2. Stress–strain
curves corresponding to the initial and two reduced relative den-
sities are shown in Fig. 10�a� for compression in the Z direction
�fcc�.

It should be noted, however, that the increased distance be-
tween the spheres can lead to inaccurate stress predictions, par-
ticularly for compression in the z direction �hcp� since the hollow
spheres in the actual material will be less prone to deform accord-
ing to the assumed mechanism. Therefore, it is worthwhile to use
another method to reduce the density of the MHS model material,
e.g., by using thinner model spheres �in a regular packing pattern�
to achieve the actual density of the MHS material.

3.2 Comparison With Some Test Results. In order to com-
pare the theoretical predictions with the test results for �* /�s

=0.052 but with spheres having t /R=0.033, a regular pattern with
gaps of 0.54R is used. On the other hand, “model hollow spheres”
with a reduced t /R ratio, which results in �* /�s=0.052, i.e., t /R

Fig. 8 Comparison between quasi-static experimental stress–
strain curves and the theoretical predictions „Eq. „25……: „a… MHS
material with �* /�s=0.052; and „b… MHS material with �* /�s
=0.045

Fig. 9 MHS material with voids: „a… actual MHS material; „b…
assumed regular packing of the spheres with gaps „FCC pat-
tern…; and „c… variation of the gap’s size and contacting radius
RT=RM for reduced relative densities „t /R=0.033…
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=0.024 instead of 0.033, is considered as an alternative model for
the density reduction. Comparison between the theoretical predic-
tions based on the two models for the density reduction is pre-
sented in Fig. 10�b� for compression in the Z direction �fcc�. One
can see that both models predict similar trends for the stress–strain
dependence although the “gap” model determines somewhat
lower strains, but the predicted stresses by both material models
are relatively close for strains larger than 0.15.

Since the two characteristic planes of loading identified for the
model material are not clearly defined in the actual MHS material,
it is appropriate to take the average from the stresses in both
directions of loading in order to compare with the actual stress–
strain curve. In this case, the second approach �using model hol-
low spheres with reduced thickness� gives more accurate results
since the stress variation based on the mechanism of deformation
described in Sec. 2.2 is accurate for both loading directions. Thus,
it is suggested that the stress variation under uniaxial loading of a
MHS material, �MHS

* ���, is calculated as

�MHS
* ���

�0
=

1

2�0
��FCC

* ��� + �HCP
* ���� =

1

�0
� f1�����*

�s
�2

+ f2���

���*

�s
�	 �25�

where

f1 = 0.5�0.071�−0.6295 + 0.0519�−0.5958� , �26a�

f2 = 0.5�0.2674�0.1608 + 0.4652�0.4318� . �26b�

The material stress–strain curve, �MHS
* ���, according to Eqs.

�25� and �26�, is plotted in Fig. 8�a�. An experimental stress–strain
curve for uniaxial compression of the MHS material made of
smaller hollow spheres, namely R=0.9 mm and t=0.049 mm
��0=344 MPa� �7�, is presented in Fig. 8�b�. The actual relative

density of this material is 0.045, so that ratio t /R=0.021 is used in
the theoretical model. The comparison between the predicted ma-
terial stress–strain dependence and the measured one shows a rea-
sonable overall agreement, although the structure of this material
is less appropriate for an analysis by the present model since the
measured relative density deviates more from the idealized hex-
agonal packing of the spheres.

The results discussed in this section suggest that the present
structural approach for an analysis of the stress–strain response of
MHS materials gives a reliable estimate for the material strength
in relatively large strains. Note that Eqs. �25� and �26� can be used
with sufficient accuracy only for MHS materials having small
bonding necks between the spheres, or can be used as lower
bound estimate for MHS materials with larger bonding angles.
This conclusion is also evident from Fig. 7, where the yield
strength for FCC spheres’ packing with 10 deg connecting angle
is shown as obtained by Sanders and Gibson �9�.

It is observed from the experimental results �Figs. 8�a� and
8�b�� that a notable essentially linear strain hardening occurs for
�Y ����D. This material characteristic can be also expressed as a
function of the relative density when using Eqs. �25� and �26� and
anticipating that a linear hardening modulus, ET, is an appropriate
approximation

ET
MHS

�0
=

1

�0

�MHS
* ��*/�s,�D� − �MHS

* ��*/�s,�Y�
��D − �Y�

�27a�

where �Y and �D are the strains at yield and densification, respec-
tively. For the two materials examined the densification occurs at
�D�0.6. The yield strength is taken at �Y =0.05 and the strain
hardening modulus is obtained as

ET
MHS

�0
= 0.159��*

�s
�0.8724

. �27b�

The hardening modulus characterizing the stress–strain relation-
ship for each loading directions is

ET
FCC

�0
= 0.0314��*

�s
�0.602

and

ET
HCP

�0
= 0.332��*

�s
�0.936

�28�

for the Z and z direction, respectively.
It could be of interest for engineering applications related to the

energy absorption estimate to obtain a constant stress in MHS
material, which is averaged over the entire “plateau” strain inter-
val up to the strain associated with the material densification.
According to the above analysis, a characteristic constant stress
averaged within the strain interval �� �0.05,0.6� is obtained as

��*�MHS
av

�0
=

2

�0
�

0.05

0.6

�MHS
* d� = 0.307��*

�s
�1.051

�29�

from which the constant stress values for the two actual MHS
materials are shown in Figs. 8�a� and 8�b�.

Equations �26�, �27�, and �29� are used to construct Fig. 11,
which shows some predicted characteristics of MHS materials de-
pending on the relative density. The results from the two tested
MHS materials �7� are also marked showing good agreement with
the results from the analytical model. It should be emphasized that
although based on particular spheres’ arrangements, the above-
mentioned equations provide averaged characteristics of MHS
materials under uniaxial compression. This indicates that the rela-
tive density is a more important factor for characterization of the
mechanical properties rather than the packing pattern and the
variation of the t /R ratio, particularly for materials with low rela-
tive density. Furthermore, the relative density is an easy measur-

Fig. 10 Stress–strain curves for MHS materials with reduced
densities „original density �* /�s=0.071…; „a… reduction by in-
creasing the gaps; and „b… stress–strain curves for MHS mate-
rials using two methods for density reduction
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able parameter for MHS material characterization, which implies
that Eqs. �25�–�29� can be easily and directly employed in engi-
neering applications.

4 Conclusions
Relevant to important engineering applications, basic mechani-

cal characteristics of MHS materials under uniaxial compression
are obtained. Based on the analytical stress–strain dependencies
under uniaxial compression, a relationship between the stress–
strain curve and material density for MHS material is suggested
for the first time. Moreover, a physical explanation is given why
the expression for the stress–strain dependence contains both lin-
ear and quadratic terms. Further, a noncompact packing is ana-
lyzed by assuming regular gaps between the spheres.

The analytical and numerical predictions are compared with
some experimental results for quasi-static compression of MHS
materials made of mild steel. Reasonable agreement among the
analytical predictions, numerical results, and the available experi-
mental data is observed, but it is necessary to further study a
wider range of the MHS material specifications in order to verify
a more general validity of the proposed material model.
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Nomenclature
D ,Dm ,Db � total plastic energy, membrane energy,

and bending energy, respectively
ET

FCC,ET
HCP,ET

MHS � hardening moduli for the characteristic
loading directions, Eqs. �27� and �28�

hC ,hM ,hS � displacement of the top point of a de-
formable sphere

krC ,krM ,krS � proportionality coefficient between two
radii of rolling hinges along C, M, and
S lines

M0 � fully plastic bending moment of the
wall, �0t2 /4

R , t � radius and thickness of a sphere
R1 � radius of the bottom sphere, R1=R, Fig.

3
RT � radius of the contact circle of the top

sphere used to model the characteristic
lines, Fig. 3�b�

W � external work
� � deformation at the stationary plastic

hinge for S line, Fig. 3�a�
� ,�D � engineering strain and strain at

densification
� � shortening of a representative block

� ,�T � current and contact angle for FCC and
HCP patterns

�0C ,�0M ,�0S � initial angles corresponding to contact
between the spheres at points on C, M,
and S lines, respectively

�C ,�M ,�S � current angles describing the deforma-
tion of C, M, and S lines, respectively

� � gap between the spheres, Fig. 9�b�
� � characteristic angle determining a con-

tact point between the spheres during
deformation of C and M lines, Fig. 3�b�

�* /�s � relative density of the MHS material
�0 � yield stress of the base material
�Y

* � yield strength of a MHS material
�MHS

* ��� � predicted engineering stress for an actual
MHS material, Eq. �25�

��*�MHS
av

� averaged engineering stress for an actual
MHS material, Eq. �29�

C ,M ,S � subscripts associated with characteristic
lines

Appendix: Contact Between the Spheres in the Direc-
tion of Loading

The initial contact between the spheres along the characteristic
lines is determined by the angles �0M and �0C as shown in Fig.
3�b� while the variation of the displacement in the direction of
loading is described by the variation of the angles �S, �M, and
�C. The definition of angles �0M and �0C are shown in Fig. 12
for compression of the MHS material in the Z direction. �0M and
�0C depend on the angle �� �0,� /3�, which is �=0 for the C
line and �=� /6 for M line.

In Fig. 12, S1S2=2 sin�35.20�+�, �=0 for closely packed
spheres; S1S2�=S1S2 cos � and the shortest distance between the
contacting spheres is

Fig. 11 Comparisons of the analytical model predictions for
the yield strength, �Y,MHS

*
„�=0.05…, and average stress, „�*

…MHS
av ,

with the available test results †7‡

Fig. 12 The definitions of the characteristic angles for the C
and M lines
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�z = 2R cos �0 − RT
2 − x̄2 − R2 − �S1S2� − x̄�2 �A1�

where RT=R1−2 sin2 �.
The condition

d

dx̄
��z� =

S1S2� − x̄

R2 − �S1S2� − x̄2�
−

x̄

R2
2 − x̄2

= 0 �A2�

gives the value of x̄ at the contact point on the surface of the
deformable sphere and the initial angle of contact is �0�

=sin−1��S1S2�− x̄� /R�.
There is no contact between the spheres during deformation but

the undeformed part of the S line is defined by angle �0S, which
is determined by the intersection between the sphere and a plane,
which passes points A1, B1 �contact points between the spheres at
the central line� and is parallel to the direction of loading �Fig.
12�.

In the analysis of the compression the initial angles of contact
�for �=0� are taken as follows: �0C=� /4, �0M =45.2 deg, �0S
=� /6 for compression in the z direction �hcp� and �0C
=35.26 deg, �0M =39.3 deg for the compression in the Z direction
with �0S=16.78 deg �fcc�.
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On the Normal Component
of Centralized Frictionless
Collision Sequences
A typical assumption for rigid body collisions with multiple impact points is that all
collisions occur simultaneously and are synchronized in their compression/expansion
behavior, a useful assumption given the microscopic time scale at which collisions occur.
In the case in which collisions are dependent upon one another, however, there is inter-
action between and within compression and expansion phases. Instead of treating the
collisions as separate consecutive impacts or by activating all constraints at the same
time, a rule is presented that orders the collisions as a sequence of interacting events at
a point in time to handle the normal component of the collisions.
�DOI: 10.1115/1.2712237�

Keywords: hybrid modeling, systematic model abstractions, parameter abstraction, time
scale abstraction, collision behavior

1 Introduction
This paper discusses a collision rule for the normal component

of sequences of frictionless collisions based on the canonical case
of centralized impact. Collision behavior of rigid bodies is an
extensively studied problem in the field of mechanics, see, e.g.,
�1–5�, and the overview �6�, and can be divided into studies on
single and multiple collisions. In the case of multiple collisions,
the underlying assumption is that there are several contact points
in the mechanical systems that exhibit collision behavior at the
same point in time. Moreover, the decomposition of the collision
effect into a compression and expansion phase is assumed to be
synchronized, i.e., all collisions are simultaneously first in their
compression and next in their expansion phase.

This assumption has proven accurate for collisions that are ini-
tiated by evaluating macroscopic dynamic behavior. However, if
collisions become dependent such that one collision triggers an-
other, the separate collision phases do not occur simultaneously
even though in a macroscopic view they are still at the same point
in time.

For example, consider the three colliding bodies in Fig. 1. It is
assumed there is centralized frictionless impact, so only the be-
havior along the normal component needs to be evaluated. There
are two contact points, one between m1 and m2 �contact 12� and
one between m2 and m3 �contact 23�. If upon collision of m1 with
m2 the collision between m2 and m3 is evaluated simultaneously
for certain restitution coefficients ���, results may be generated
that contradict a first-order linearized �spring-damper� approxima-
tion �7�.

To make this intuitive, consider the bodies have equal mass m,
and collisions are perfectly elastic; i.e., �12=�23=1. At the time of
collision, m2 and m3 are at rest, so there is no restitution of rela-
tive velocity. Therefore, if executed simultaneously, the collision
between m1 and m2 appears to be between a body with mass m
and a body with mass 2m, and, consequently, m1 will obtain a
velocity with opposite sign. However, from experiments it is
known that m1 should �almost� come to rest, a result that is de-
rived from evaluating the collisions in sequence. Because of the
dependency between the collisions, for �12=�23=1 it is critical to
evaluate the collisions in sequence.

For other restitution coefficients, quite the opposite is true.
Consider again a perfectly elastic collision between m1 and m2
��12=1�, but combined with a perfectly non-elastic collision be-
tween m2 and m3 ��23=0�. In this case, a linear first-order approxi-
mation of the collision behavior between m1 and m2 does approxi-
mate that of a collision between one body with mass m and
another with mass 2m, and m1 obtains a velocity with opposite
sign. However, if the idealized collisions are evaluated in se-
quence, first m1 transfers its momentum to m2, and next this is
distributed over m2 and m3 to obtain equal velocities of half the
initial magnitude.

These observations are discussed in detail in previous work
�6,7� that explicates the necessity for either a pairwise evaluation
or simultaneous evaluation, depending on the coefficients of res-
titution. This is a rather unsatisfying phenomenon, especially
since it leaves unclear for which � to switch between the different
evaluations. This paper seeks to overcome this by introducing a
pre-collision stage preceding dependent collisions, computed
based on Newton’s collision rule. This presents a rule for model-
ing sequences of dependent collisions that converges uniformly
between the limit values.

2 Collisions Reviewed

On a macroscopic scale, collision behavior can be modeled by
�i� the equations of motion that describe relative velocities and
acceleration and forces at the contact points and �ii� the contact
conditions, i.e., the conditions that determine whether the collision
equations of motion are active. In addition, it is required to find
contact points, i.e., perform collision detection, which is beyond
the scope of this paper.

The distance between two bodies at a contact point i is given by
gN

i , the relative velocities at a contact point by ġN
i and the con-

straint force in the normal direction by �N
i . Methods for comput-

ing these values immediately before collision are described in
detail elsewhere; e.g., in �3,5�. In the following, because of the
assumptions that the collision is without friction, at center, and
only occurs in the normal direction, the subscript N can be re-
moved, as all variable values are given in the normal direction.
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2.1 A Linear Approximation. To evaluate the accuracy of
the collision rules, at least in a gross sense, a linear first-order
spring-damper �RC� collision approximation for the system in Fig.
1 is used as a reference. The velocity values after the collision are
presented in Table 1 for several parameter combinations �simula-
tions are performed with the hybrid bond graph simulator HY-

BRSIM �8,9��. Here, the damper parameters R12 and R23 capture
the dissipation of the collisions between m1 and m2, and m2 and
m3, respectively. Similarly, the linear approximation of the elas-
ticity is captured by C12 and C23. The initial state is v1=1, v2=0,
and v3=0, where v j , j� �1,2 ,3�, is the velocity of mass mj.

Two mass distributions are evaluated; one where m1=m2=m3
=1 and the other where m1=m2=1 and m3=1000. The latter cor-
responds to an example in other work �5� where a ball is bounced
off another ball that is at rest on a floor �see Fig. 2�. The dissipa-
tion is varied between large and small values to serve as a refer-
ence for ��0 and ��1, respectively, in the idealized case. Note

that the linear model is a rough approximation of the real collision
phenomenon, and only valid as a rather qualitative indication.

2.2 Collision Rules. The equations of motion can be de-
scribed by a Newton or Poisson type collision rule. Newton’s rule
specifies the collision at a contact point in terms of the relative
velocity before �ġA� and after the collision �ġE�1

ġE = − �ġA �1�

where � �0���1� is the coefficient of restitution that determines
the energy that is dissipated during the collision. For �=0, the
collision is perfectly non-elastic and there is maximum dissipa-
tion, for �=1, the collision is perfectly elastic and there is no
dissipation.

Poisson’s collision rule is formulated on the force level and
consists of a compression and expansion stage. During the com-
pression stage, a force builds up until the relative velocity be-
tween the colliding bodies has vanished. The velocities of the
individual bodies at this point are indexed by C, e.g., vC. This
force is then applied during the expansion stage. In the idealized
collision model, these compression and expansion phases occur
instantaneously at the same point in time, but are ordered so that
the expansion phase begins immediately after the compression
phase is completed. Thus the compression and expansion forces
become impulsive: �C and �E, respectively. To account for dissi-
pation, the return impulse is modified by a coefficient �

�E = ��C �2�

Note that computationally this coefficient � is not the same as the
coefficient of restitution � used in Newton’s collision rule. How-
ever, conceptually they are similar in that they capture the degree
of elasticity of the collision. Therefore, and in order not to pro-
duce excessive, and to an extent superfluous, notation, the same
variable � is used in the proceedings.

Given the equations of motion, the contact conditions still need
to be specified to completely capture collision behavior. In the
case of the unilateral constraints of collision phenomena, the
complementarity formulation can be used. This formulation states
that �i� when the bodies are touching, gi=0, there can be a positive
force between them ��i�0� and �ii� when the bodies are discon-
nected �gi�0� there is no force between them ��i=0�. This can be
formulated in a compact set of constraints

gi � 0 �i � 0 gi�i = 0 ∀ i � IG �3�

where IG is the set of all possible contact points. Typically
�3,5,10�, these complementarity constraints are formulated on the
acceleration level, in which case the gi variable is replaced by g̈i

g̈i � 0 �i � 0 g̈i�i = 0 ∀ i � IG �4�
The use of the complementarity principle in physical system mod-
eling is discussed in more detail elsewhere �11�. Other work �7�
has used a state transition formulation to determine whether con-
tact exists and whether a collision occurs.

In �3�, the collision conditions for applying Newton’s collision
rule are

IN = �i � IG�gi = 0; ġi � 0� �5�

Thus, the relative distance has vanished and the relative velocity
is toward each other. The condition for applying Poisson’s colli-
sion rule, though, is

IP = �i � IG�gi = 0� �6�

The reason for this is that to ensure the bodies do not penetrate in
the case of multiple contacts, Newton’s collision rule requires
stricter assumptions. Because Poisson’s collision rule breaks down
in two phases, it can be evaluated as to whether penetration will

1Notation is derived from �3�. Contact points will be superscripted, whereas ref-
erence to bodies around contact points and their variables are subscripted.

Table 1 Benchmark results of numerical linear approximation

C12=0.1, C23=0.1, m1=1.0, m2=1.0

m3 R12 R23 v1 v2 v3

1000 0.05 0.05 −0.9744439 −0.21306606 0.0021875096
1000 50 0.05 −0.48997312 −0.4817458 0.0019684185
1000 0.05 50 −0.9101933 −0.00493735 0.00191513
1.0 0.05 0.05 −0.13018857 0.15019388 0.9799948
1.0 50 0.05 0.16781114 0.17072338 0.6614654
1.0 0.05 50 −0.32068235 0.65912620 0.6615559

Fig. 1 A sequence of dependent collisions

Fig. 2 Collision between two bodies and a floor
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occur given the compression impulses in an intermediate evalua-
tion, and at this point it can be corrected by allowing arbitrarily
large impulses. Note that this implies that the collisions are evalu-
ated simultaneously.

2.3 Example. In accordance with Table 1, the differences in
behavior are illustrated by two mass distributions, i.e., m1=m2
=m3=1 and m1=m2=1, m3=1000, for the system in Fig. 1 with
varying degrees of elasticity for the respective collisions.

2.3.1 Newton. For the system in Fig. 1, upon vanishing of g12,
it is evaluated whether ġ12�0, which is true. In addition g23=0
and ġ23�0, so the collision rule generates

�v2,E − v1,E� = − �12�v2,A − v1,A� �7�

�v3,E − v2,E� = − �23�v3,A − v2,A� �8�

In addition, the forces have to be balanced, i.e., F1+F2+F3=0,
which has the instantaneous equivalent �conservation of momen-
tum�

m1�v1,E − v1,A� + m2�v2,E − v2,A� + m3�v3,E − v3,A� = 0 �9�

This combines into a set of three equations with three unknowns,
and it can be solved for v j,E, j� �1,2 ,3�.

Figure 3 shows the velocities computed from evaluating these
constraints for varying �12 and �23 and fixed �23=1 and �12=1,
respectively. Note that, because �v3,A−v2,A�=0, v3,E=v2,E. For
m1=m2=m3=m and �12=1, the results equal a collision between a
body with mass m and one with mass 2m, which represents
anomalous behavior because momentum should be completely
transferred from m1 to m3.

In case m3 becomes very large, Fig. 3�b�, it remains almost at
rest and because �v3,A−v2,A�=0 the same holds for m2. In terms of
Fig. 2, using Newton’s collision rule, m2 never leaves the floor,
which contradicts the results for a linear approximation in Table 1.
This conforms the analysis in �5� and is circumvented by Pois-
son’s collision rule.

2.3.2 Poisson. For the Poisson collision rule, upon vanishing
of gi, first the impulsive forces because of the compression phase
are computed. This results in �vi,C are the velocities at the end of
the compression phase�

�C
12 = − m1�v1,C − v1,A� �10�

�C
23 = m3�v3,C − v3,A� �11�

where the minus sign is determined by the chosen reference point
and is present because the forces between the bodies work in
opposite directions. This introduces two additional variables,
which requires two more equations that arrive from the constraint
that at the end of the compression phase the relative velocity is 0,
so

v1,C = v2,C �12�

v2,C = v3,C �13�

With the equations

�E
12 = �12�C

12 �14�

�E
23 = �23�C

23 �15�

and conservation of momentum

m1�v1,C − v1,A� + m2�v2,C − v2,A� + m3�v3,C − v3,A� = 0, �16�

it can be solved for v1,C, v2,C, v3,C, �C
12, �C

23, �E
12, and �E

23. Instead

of Eqs. �14� and �15�, the following complementarity problems
are solved

��E
i − �i�C

i �ġE
i = 0 �17�

to ensure either Poisson’s rule is applied �the left factor� or the
relative velocity vanishes �the right factor�. Thus, the impulse �E

i

is computed by Poisson’s collision rule, or by ensuring there is no
penetration.

In the example in Fig. 1, for equal masses and �23=1, the fol-
lowing sequence of values is obtained for �12�0.25

Fig. 3 Resulting velocities for Newton’s collision rule: „a… As a
function of �12; „b… as a function of �12 with m3 large; „c… as a
function of �23
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v1

v2

v3

�1

�2


 = 	
v0

0

0

0

0

, 	

1
3v0

1
3v0

1
3v0

2
3v0

1
3v0


, �	
1
3 �1 − 2�12�v0

2
3�12v0

2
3v0

2
3�12v0

1
3v0


� , 	
1
6v0

1
6v0

2
3v0

1
6v0

1
3v0



�18�

where the vector in parentheses contains the values that would
have been obtained if instead of the complementarity constraints
in Eq. �17� to prevent penetration of m1 and m2, Eq. �14� and Eq.
�15� were used. To prevent penetration, an arbitrarily large im-
pulse is computed from the ġ12=0 constraint; in this case, �E

12

= 1
6v0. If �12�0.25, there is no penetration and the vector values

in parentheses give the final collision values.
Figure 4 shows the resulting velocities for varying �12 and �23.

Clearly, in case �23=1, the collision rule does not return values
conform the linear approximation in Table 1. Also, for fixed �12

=1, behavior in Fig. 4�c� shows no dependence on �23, although
this is expected from the linear approximation �compare the
�R12,R23� entry �0.05,0.05� in Table 1 with entry �0.05,50��.

For a large mass m3, approximating the setup in Fig. 2, this
collision rule does predict m2 leaving the floor, in accordance with
the linear first-order approximation in Table 1 �entry R12=50 and
R23=0.05�, but for the other limit case �12=1 and �23=1, its pre-
diction deviates from the linear first-order approximation �entry
R12=0.05 and R23=0.05�.

3 A Uniformly Converging Formula
As illustrated in Sec. 2, the collision effects based on Newton

and Poisson rules do not provide satisfactory results for central-
ized frictionless dependent collision sequences for all coefficients
of restitution; i.e., 0��i�1. To devise a formula that does, the
behavior of a first-order linear approximation of the collision se-
quence in Fig. 1 is first analyzed �see also �7��. For two different
damper parameters of the collision between m2 and m3 �R23

=0.05 and R23=5�, the collision behavior is shown in Fig. 5. From
this it can be seen that the larger the dissipation between m2 and
m3; i.e., the less elastic the collision, the less the difference in
relative velocity that is allowed.

This observation leads to the conjecture that the velocity of
bodies in contact, not immediately partaking in a collision, follow
each other more closely or not, depending on the elasticity be-
tween them. The velocity of one body can then be described as
being a fraction of the velocity of the other; e.g., v3=�23v2 �0
��23�1� before the collision effect takes place. Here, �23 is
assumed to depend on the elasticity, or coefficient of restitution, as
�23=1−�23. In general, this leads to the following instantaneous
representation at a contact point i

v2
i = �iv1

i �19�

with �i=1−�i and v1
i and v2

i such that v2
i �v1

i .
To design a uniformly converging collision rule, the second

collision in the sequence �i.e., the one between m2 and m3 in Fig.
1� has to take the change of velocities during the preceding, inter-
acting collision into account. Including this interaction in an ide-
alized collision rule is difficult because the collisions are active
only at one moment in time and partial interaction is difficult to
model. For Poisson’s collision rule, limited interaction is possible
by allowing interaction between compression and expansions
phases, but this is insufficient to handle the illustrated complex
interaction.

To design a more flexible collision rule, an additional phase in
the collision process is introduced that accounts for the change in

relative velocity as given in Eq. �19�. This constraint becomes
active whenever there is a dependent contact point where a colli-
sion takes place that affects the velocity, i.e., for a contact point i,
such that gi=v2

i −v1
i

gi = 0 ∧ ġE
i � 0 ∧ �v1,E

i � v1,A
i ∨ v2,E

i � v2,A
i � �20�

Here the constraints on relative position and velocity determine
that a collision occurs and the constraints on the individual veloci-

Fig. 4 Resulting velocities for Poission’s collision rule: „a… As
a function of �12; „b… as a function of �12 with m3 large; „c… as a
function of �23
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ties determine that dependent collisions are active that affect the
velocities.2

To allow collisions to occur at nonzero velocity, the constraint
in Eq. �19� has to be extended. For this case, �v2,E−v2,A � � �v3,E
−v3,A�, and v3 reaches a fraction of v2 while taking an offset v3,A
into account

v3,E = �1 − �23� * �v2,E − v3,A� + v3,A �21�

or, in general, for a contact point i

v2,E
i = �1 − �i� * �v1,E

i − v2,A
i � + v2,A

i �22�

However, in this formulation, for �i=1, v2,E
i =v2,A

i , and, therefore,
v2,E

i is fixed. Thus, other simultaneous collisions cannot affect
v2,E

i , an anomalous situation. Instead, the formulation should be
such that for this value of �i the velocity v2,E

i is not affected by the
dependent collision; i.e., there is no force acting. This requires a
formulation at the force �impulse� level, instead of in terms of
velocities. Accounting for the substitute mass, ms

i =m1
i m2

i / �m1
i

+m2
i �, where m1

i and m2
i are the two masses involved in the colli-

sion at contact i, this leads to the formula

�i�i + �1 − �i�ms
i ġE

i = 0, 0 � �i � 1 �23�

Thus, for �i=0, the velocities become equal and for �i=1 there is
no interaction because �i=0.

For one contact point between two masses, the impulsive force
acting on m2 can be derived from Eq. �23� by writing

�im2
i �v2,E

i − v2,A
i � + �1 − �i�ms

i�v2,E
i − v1,E

i � = 0 �24�

From this, in the case m1
i =m2

i =1, Eq. �22� follows.
Putting the pieces together, the collision rule extends the stan-

dard Newton’s collision rule as follows. If gi=0∧ ġE
i �0 contact

behavior is evaluated based on two cases:

1. A pre-collison phase because of dependency between colli-
sions �i.e., v2,E

i �v2,A
i ∨v1,E

i �v1,A
i �. Behavior is computed

based on an initial velocity change and by balancing forces,
i.e.

�i�i + �1 − �i�ms
i ġE

i = 0

F1
i = − �i

F2
i = �i �25�

with ms
i the substitute mass.

2. Execution of the collision effect, computed based on New-
ton’s collision rule and by balancing forces, i.e.

v2,E
i − v1,E

i = − �i * �v2,A
i − v1,A

i �

F1
i = − F2

i �26�

Thus, behavior at the contact points is then governed by either the
velocity restitution based on Newton’s collision rule or by the
pre-collision effect �in addition to conservation of momentum, no
longer explicitly mentioned in the proceedings�. The particular
contact points are elements of the sets Ik

N and Ik
P, respectively.

Furthermore, the pre-collision effect is always first completed by
executing Newton’s collision rule after the pre-collision at that
contact point, provided ġE

i �0 still holds, before new independent
collisions are inferred. The forces are summed in case multiple
contact points exert a force on the same mass.

In summary, the independent collision set that may trigger a
sequence of collision and pre-collision effects can be specified by

Ik
N1 = �i � IG��gi = 0 ∧ ġE

i � 0� ∧ �v2,E
i = v2,A

i ∧ v1,E
i = v1,A

i ��
�27�

and applies Newton’s collision rule.3 Because of the second
clause, the sequence of pre-collision and collision effects is first
completed before a possible new collision sequence is triggered.4

Each pre-collision in a set Ik−1
P may be followed by Newton’s

collision rule as well, gathered in the set Ik
N2

Ik
N2 = �i � IG�i � Ik−1

P ∧ �gi = 0 ∧ ġE
i � 0�� �28�

and Ik
N= Ik

N1 � Ik
N2. Given these sets of contact points, Ik

N1 and Ik
N2,

the “intermediate” velocities ġP
i are computed using Eq. �26� with

v j,E
i substituted for the input v j,A

i . These are intermediate velocities
as their values may cause pre-collision effects Ik

P

Ik
P = �i � IG�ġP

i � 0� �29�

When all sets, i.e., Ik
N1, Ik

N2, and Ik
P, are determined, the velocities

are updated, i.e., v j,A
i =v j,E

i , and the new v j,E
i are computed using

Eqs. �25� and �26� for the contact points in Ik
P and Ik

N, respectively.
During this sequence of computations, v j,E

i �v j,A
i , and, there-

fore, Ik+l
N1 =�. When the sequence of pre-collisions and collisions

has terminated, Ik+m
N2 =� and ġP

i = ġi, and, consequently, Ik+m
P =� as

well, where 0� l�m. Therefore, v j,E
i =v j,A

i and Ik+m
N1 may be popu-

lated again and further collisions may occur. The first collision is
indexed k=1, I0

P= I0
N1 = I0

N2 =�, and k is reset to 0 when no further
collisions occur �either dependent or independent�.

The results of this new collision rule for three colliding bodies,
as shown in Fig. 1, can now be compared against those for New-
ton and Poisson collision rules presented in Sec. 2. Both the New-
ton and Poisson collision rules did not properly transfer momen-
tum from m1 to m3 in the case �12=�23=1, as can be seen in Figs.
3 and 4. The new collision rule does properly exhibit this behav-
ior, as illustrated by Fig. 6�a�. In addition, Figs. 3�c� and 4�c�
show the Newton and Poission collision rules to have no �23 de-
pendence when �12=1. In Fig. 6�c�, the �23 dependence of the new
collision rule is shown to achieve correct values for the limit
values, �23=0 and �23=1.

In case a large mass m3 is used, mimicking a collision between
two bodies, one of which is at rest on a floor �see Fig. 2�, New-
ton’s collision rule would not properly compute m2 leaving the
floor, as shown in Fig. 3�b�. The new collision rule does yield this
behavior, as shown in Fig. 6�b�, and it does not produce an abrupt
change in behavior for varying �12, as illustrated for Poisson’s
collision rule in Fig. 4�b�.

Note that for large m3 and �12=�23=1, similar to Poisson’s col-
lision rule, the new collision rule computes velocities that differ
from the first-order approximation in Table 1, entry m3=1000,
R12=0.05, R23=0.05. This approximation, however, is a crude
one, and real-life experiments should be performed to establish

2During continuous behavior, v1,E
i =v1,A

i and v2,E
i =v2,A

i , as the left and right limit
values of a point on a continuous �C0� curve have to be equal.

3Note that gi is not indexed by either E or A as it is a C0 variable.
4Alternatively, to achieve the same effect, the clause can be replaced by Ik−1

P =�.

Fig. 5 Different elasticity leads to differences in relative
velocity
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realistic behavior. Intuitively, for �12=�23=1, a sequence of iso-
lated collisions would occur, transfering momentum completely
from m1 to m2, which then collides with the large mass m3, caus-
ing m2 to reverse its velocity and to then transfer its momentum
completely back to m1. Therefore, m2 would remain at rest.

4 Increasing Complexity
Because three bodies only allow two collisions, and, therefore,

analysis of only one pair of dependent collisions, generality is

limited. To investigate a more general situation, sequences of col-
lisions of four bodies, as shown in Fig. 7, are analyzed. The re-
sults for varying �i are presented in Fig. 8 for m1=m2=m3=m4
=m. Collision behavior for the different sets of active rules is
derived and computed by MATLAB

® �12� and its Symbolic Math
Toolbox �13�.5 Note that, again, collision behavior is smooth and
converges between the two limit values that can be verified to
match collision behavior of more detailed models.

To illustrate the execution of the collision law, consider the case
where �23=0.5 in Fig. 8�b�. The sequence of collision effects for
this parameter value is given in Table 2. The velocities achieved
during the collision are
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4

�30�

where the values in parentheses are the results after computing
ġP

i , these are replaced because analysis shows that further pre-
collision effects occur. Note that pre-collision effects do not trig-
ger further pre-collision effects; otherwise, at step 1, contact 34
would be included as a pre-collision because v3�v4.

A detailed physical explanation for this is difficult to provide as
the propagation of the collision shockwaves is a complicated and
still not a well-understood phenomenon. Given the accuracy of the
presented model, it appears as though there is a degree of coupling
between the “secondary” contact points �those that partake in the
pre-collision� that allow shockwaves of the primary collision to
travel across them, the degree of which is related to the coefficient
of restitution. Given this, the secondary contact points represent a
first-order effect, and these higher order effects of this coupling
can be abstracted away from the collision model.

This observation is supported by experiments reported in �14�
where an “impulse transmission ratio” is introduced similar to the
coupling coefficient � in Sec. 3. The impulse transmission ratio is
applied to triplets of adjacent bodies, or two adjacent contact

5The MATLAB code of the collision models is available upon request.

Fig. 6 Resulting velocities for the new collision rule: „a… As a
function of �12; „b… as a function of �12 with m3 large; „c… as a
function of �23

Fig. 7 A sequence of four colliding bodies
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points, as well. Note that, in general, � can be chosen an indepen-
dent parameter, as opposed to substituting �=1−�.

This system also includes behavior where a pre-collision is trig-
gered for a contact but not followed by Newton’s collision rule,
i.e., it does not appear in I1

N2. If �23=0, the first collision is I1
N1

= �1�, I1
N2 = ��, and I1

P= �2�, and the post-velocities v1=− 1
3v0, v2

=v3= 2
3v0, and v4=0. The next iteration yields I1

N1 = ��, I1
N2 = ��, and

I1
P= �� because v j,E

i �v j,A
i , i� �1,2 ,3�, j� �1,2�, and, therefore,

contact 34 is not included in I1
N1. After the v j,A

i are updated, the
collision computation is resumed with I2

N1 = �3�, I2
N2 = ��, and I2

P

= �2�.
The presented extended collision rule is still sensitive to initial

value perturbations. Consider the mass distribution m1=1, m2
=0.1, m2=1, and m3=1. For 0��23�1, the velocities after colli-
sion are shown in Fig. 9. For certain values of �23, discontinuous
changes in final velocities occur. This is caused by a change in the
sequence of active contact points when it includes simultaneous
collisions; i.e., Ik

N2 has a size larger than 1 �see the results in Table
3�. Even when such a collision is triggered with very small rela-
tive velocity, it causes a significant change in the post-collision
velocities. This may be prevented by invoking a pre-collision
stage as well when collisions with low relative velocity take place.
The effect of these pre-collisions can gradually decrease until for
larger relative velocity a true collision takes place; i.e., �i= f�ġi�.
Future work will concentrate on further exploring this phenom-
enon.

5 Conclusions
Often, in collision models the normal component is handled by

either a Newton or Poisson type collision law. In the case of
multiple impacts, the collisions are assumed to occur at the same
point in time and to be synchronized in terms of their compression
and expansion behavior.

This assumption is violated when sequences of dependent col-
lisions occur and compression and expansion phases overlap. In
the limit cases, i.e., restitution coefficients of value 0 and 1, either
all constraints need to be activated simultaneously or sequentially.
This is discussed in detail in other work �7�. Because of the two

Fig. 8 Resulting velocities for the new collision rule: „a… As a
function of �12; „b… as a function of �23; „c… as a function of �34

Table 2 Collision sets

k Ik
N1 Ik

N2 Ik
P

1 �1� �� �2�
2 �� �2� �3�
3 �� �3� �2�
4 �� �2� ��

Fig. 9 Final velocities for m2=0.1 and 0��23�1

Table 3 Collision sets, m2=0.1, �23=0.6

k Ik
N1 Ik

N2 Ik
P

1 �1� �� �2�
2 �� �2� �1,3�
3 �� �1,3� �2�
4 �� �2� �1�
5 �� �1� �2�
6 �� �2� �1,3�
7 �� �1,3� ��

914 / Vol. 74, SEPTEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



different methods of handling the limit cases, there is no uniform
convergence between them based on one type of activation con-
straint only.

This paper presents a method wherein a pre-collision phase
precedes the application of Newton’s collision rule in the case of
multiple dependent sequential collisions. It is shown how the re-
sulting characteristic converges uniformly between the limit cases.
Furthermore, it is shown that this extended collision rule conforms
better with a linear first-order approximation.

Because of the superior characteristics of Poisson’s collision
rule for multiple contacts �5�, future work will concentrate on
extending this collision rule similarly. Furthermore, sensitivity to
simultaneous independent collisions will be further investigated.
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Dynamic Stress of a Circular
Cavity Buried in a Semi-Infinite
Functionally Graded Material
Subjected to Shear Waves
The multiple scattering of shear waves and dynamic stress in a semi-infinite functionally
graded material with a circular cavity is investigated, and the analytical solution of this
problem is derived. The analytical solutions of wave fields are expressed by employing
the wave function expansion method, and the expanded mode coefficients are determined
by satisfying the boundary condition of the cavity. The image method is used to satisfy the
traction-free boundary condition of the material structure. As an example, the numerical
solution of the dynamic stress concentration factors around the cavity is also presented.
The effects of the buried depth of the cavity, the incident wave number, and the nonho-
mogeneity parameter of materials on the dynamic stress concentration factors are ana-
lyzed. Analyses show that when the nonhomogeneity parameter of materials is �0, it has
less influence on the maximum dynamic stress around the cavity; however, it has greater
influence on the distribution of dynamic stress around the cavity. When the nonhomoge-
neity parameter of materials is �0, it has greater influence on both the maximum dy-
namic stress and the distribution of dynamic stress around the cavity, especially in the
case that the buried depth is comparatively small. �DOI: 10.1115/1.2712238�

Keywords: exponentially graded material, multiple scattering of elastic waves, dynamic
stress concentration factor, circular cavity

1 Introduction
Functionally graded materials �FGMs� are the new generation

of composites and an important area of materials science research.
The volume fraction of the materials changes gradually; the non-
homogeneous microstructures in the materials produce continuous
graded macroscopic properties, such as the heat conductivity, spe-
cific heat, and mass density. All the properties have many poten-
tial applications, e.g., thermal barrier coating, thermal protection
of the reentry capsule, furnace liners, personal body armor, the
materials of elevated temperature, and heat resistance for the elec-
tromagnetic sensors, graded refractive index materials for optical
applications. In an ideal FGM, the material properties may vary
smoothly along one direction. As an example, having a smooth
transition region between a pure metal and pure ceramic would
result in a new type of materials, which combines the desirable
high-temperature properties and thermal resistance of a ceramic
with the fracture toughness of a metal �1,2�.

In engineering, composite plate structures have found extensive
use. During tailoring, connection, and serving of these structures,
it is inevitable to make cavities, and some failures �such as holes
and cracks� may also occur inside the structures. Under dynamic
loads, the stress around and near the discontinuities may increase
sharply, which causes the decrease of the strength of structures
and the fatigue and fracture of structures. With the advent of
FGMs, significant efforts have been made in the study of the
dynamic stress around the cavities and cracks in the materials
under dynamic loading. These include analytical, numerical, and
experimental investigations.

At present, the numerical method is employed extensively to
solve the dynamic stress around and near the discontinuities in

composite materials. Using the boundary element method, Rice
and Sadd �3� investigated the propagation and scattering of SH-
waves in semi-infinite homogeneous materials containing subsur-
face cavities, and the numerical solution of the dynamic stress
around the cavity was obtained. By making use of Laplace and
Fourier integral transforms and a numerical Laplace inversion
technique, Li and Weng �4� presented the dynamic stress intensity
factor of a cylindrical crack located in a functionally graded ma-
terial interlayer between two coaxial elastic dissimilar homoge-
neous cylinders and subjected to a torsional impact loading, and
the effect of parameters on dynamic stress intensity factor was
also analyzed. Assuming an exponential spatial variation of the
elastic properties, Ueda �5� adopted the Fourier transform tech-
nique to compute the dynamic stress intensity factor of the surface
crack in a layered plate with a functionally graded nonhomoge-
neous interface and analyzed the effect of the geometric and ma-
terial parameters on the variations of dynamic stress intensity fac-
tors. Finite element method was also applied to analyzed the effect
of different elastic gradient profiles on the fracture behavior of
dynamically loaded functionally graded materials having cracks
parallel to the elastic gradient �6�. Based on the integral equation
for the crack in a nonhomogeneous medium with a continuously
differentiable shear modulus, Chan et al. �7� studied the dynamic
stress of the crack under shear waves in FGMs. Based on a mesh-
less local boundary integral equation method, Sladek et al. �8�
solved the dynamic stress of the crack numerically in functionally
graded materials under the dynamic anti-plane shear loading.

Although these numerical methods are very useful tools for
these problems, it is also very important to determine the physical
behavior of the problems with analytical method. Pao and Chao
�9� studied elastic wave scattering and dynamic stress concentra-
tions in thin plate with cutouts, and the analytical and numerical
solutions of the problem were presented. Kung �10� also studied
dynamic stress concentrations in thin plates and gave the expres-
sions of bending moment and shearing force versus frequency.
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Klyukin et al. �11� studied the scattering of flexural waves pro-
duced by a row of circular inclusions in plates, and the analytical
solution was presented. The image method was applied to analyze
scattering and dynamic stress concentrations of elastic waves in
plates having a circular cavity subjected to a plane harmonic SH
wave �12�.

It is well known that the model of semi-infinite structures is one
of the most common types of structural elements encountered in
many practical engineering structures. However, because of the
effects of the boundaries of the investigated areas, complex prob-
lems �e.g., multiple scattering of elastic waves� may arise. In this
area, very little literature was reported in the past. In this paper,
based on the theory of multiple scattering, employing image
method, and wave functions expansion method, the multiple scat-
tering and dynamic stress in a semi-infinite functionally graded
material with a circular cavity is investigated and the analytical
solution of this problem is presented. The addition theorem for
Bessel function is used to accomplish the translation between dif-
ferent coordinate systems. The numerical solutions are graphically
illustrated. The effects of the geometric and material parameters
on the dynamic stress concentration factors around the cavity are
also analyzed. The results can provide great help for the design of
semi-infinite functionally graded materials.

2 Wave Motion Equation and Its Solution
Consider a semi-infinite plate structure of exponentially graded

materials, as depicted in Fig. 1. For simplicity, we assume that the
shear modulus and density of materials vary continuously, and the
same nonhomogeneity parameter is used to describe the variation
of them, i.e.,

��x� = �0 exp�2�x�, ��x� = �0 exp�2�x� �1�

where �0 and �0 are the shear modulus and density of materials at
the position of x=0, respectively, � is a nonhomogeneity param-
eter that denotes the exponent of spatial variation of the shear
modulus and density of materials �2�. A circular cavity is buried at
a depth of b beneath the surface of the semi-infinite material. An
anti-plane shear wave propagates along the positive x direction in
materials.

The anti-plane governing equation in materials is described as

��xz

�x
+

��yz

�y
= ��x�

�2u

�t2 �2�

where �xz and �yz are the anti-plane shear stresses, and u is the
displacement field.

The constitutive relations of anti-plane shear displacement are

�xz = ��x�
�u

�x
, �yz = ��x�

�u

�y
�3�

Substituting Eq. �3� into Eq. �2�, the following equation can be
obtained:

�2u

�x2 +
�2u

�y2 + 2�
�u

�x
=

1

cs
2

�2u

�t2 �4�

where cs=��0 /�0 is the wave speed of shear waves.
The steady solution of the problem is investigated, let u

=U exp�−i�t�, Eq. �4� can be changed into

�2U + 2�
�U

�x
+ k2U = 0 �5�

where � is the frequency of the incident waves, k=� /cs is the
wave number of elastic waves.

The form of the solution of Eq. �5� can be proposed as

U = exp�− �x�w�x,y� �6�

where w�x ,y� is the function introduced for derivation.
Substituting Eq. �6� into Eq. �5�, one can see that the function

w�x ,y� should satisfy the following equation:

�2w + �2w = 0 �7�

Here, �= �k2−�2�1/2.
According to Eqs. �5�–�7�, one can see that there exist elastic

waves whose form is Ue−i�t=u0 exp�−�x�ei��x−�t�, which denotes
the propagating wave with its amplitude of vibration attenuating
in the x direction.

According to Eq. �5�, the general solution of the scattered field
resulting from the cavity in FGMs can be described as

us = exp�− �r cos 	� �
n=−





AnHn
�1���r�ein	 �8�

where r= �x ,y�, Hn
�1��·� is the nth Hankel function of the first kind,

An are the mode coefficients of the scattered waves, and deter-
mined by satisfying the boundary condition. The solution of the
scattered-reflected waves is the same as that of the scattered
waves �12�.

3 Excitation of Elastic Waves and the Total Wave
Field

Consider an antiplane shear wave propagating along the posi-
tive x direction. In the local coordinate system �r ,	� of the real
cavity, the incident waves can be described as

u1
�i� = u0 exp�− �x�exp�i��x − �t��

= u0 exp�− �r cos 	� �
n=−





inJn��r�exp�in	�exp�− i�t� �9�

where u0 is the amplitude of the incident waves, � is the wave
number of the propagating waves, Jn�·� is the nth Bessel function
of the first kind.

For the image cavity, the incident waves propagate in the nega-
tive x� direction and are expressed as

u2
�i� = u0 exp��x��exp�− i��x� + �t��

= u0 exp��r� cos 	�� �
n=−





i−nJn��r��exp�in	��exp�− i�t�

�10�
The reflected waves at the edge of the semi-infinite FGM are

described by the scattered waves resulting from the virtual image
cavity. When the multiple scattering between the real and image
cavities is considered, in the local coordinate system �r ,	� of the
real cavity, the scattered field resulting from the real cavity can be
described as

Fig. 1 Schematic of the buried cavity and the incident elastic
waves in a semi-infinite graded material
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u1
�s� = exp�− �r cos 	��

l=1




�
n=−





An
l Hn

�1���r�exp�in	�exp�− i�t�

�11�

where l denotes the time of the scattering between the real and
image cavities, An

l �l=1,2 , . . . ,
� determined by satisfying the
boundary condition are the mode coefficients of the lth scattering
of the real cavity.

Likewise, in the local coordinate system �r� ,	��, the scattered
field resulting from the image cavity can be described as

u2
�s� = exp��x���

l=1




�
n=−





Bn
l Hn

�1���r��exp�in	��exp�− i�t�

= exp��r� cos 	���
l=1




�
n=−





Bn
l Hn

�1���r��exp�in	��exp�− i�t�

�12�

where Bn
l �l=1,2 , . . . ,
� determined by satisfying the boundary

condition is the mode coefficient of the lth scattering of the image
cavity.

Thus, the total field of elastic waves in materials is taken to be
the superposition of the incident field, the scattered field, and the
reflected field at the edge of materials, namely,

u = u1
�i� + u1

�s� + u2
�s� �13�

To make computation tractable, the expression of elastic wave
in the local coordinate system �r� ,	�� can be translated into an-
other local coordinate system �r ,	�. According to the addition
theorem for Bessel function �13�, the following relation can be
derived:

Hn
�1���r��ein	� = �

m=−





�− 1�m−nHm−n
�1� �2kb�Jm��r�eim	 �14�

Similarly,

Hn
�1��kr�ein	 = �

m=−





Hm−n
�1� �2kb�Jm�kr��eim	� �15�

Thus, the following translation of coordinate systems can be
obtained:

exp��r� cos 	�� �
n=−





Hn
�1���r��exp�in	��exp�− i�t�

= exp���2b + r cos 	�� �
n=−





�
m=−





�− 1�m−nHm−n
�1� �2�b�

�Jm��r�exp�im	�exp�− i�t� �16�

where r�=�r2+4b2+4rb cos 	, cos 	�= �r�2+4b2−r2� /4br�.

exp�− �r cos 	� �
n=−





Hn
�1���r�exp�in	�exp�− i�t�

= exp���2b − r� cos 	��� �
n=−





�
m=−





Hm−n
�1� �2�b�Jm��r��

�exp�im	��exp�− i�t� �17�

where r=�r�2+4b2−4r�b cos 	�, cos 	=−�r2+4b2−r�2� /4br.
Without loss of generality, the case that the cavity is free of

traction is investigated. The boundary condition is that the radial
shear stress is equal to zero, namely,

��rz�r=a = ��
�u

�r
�

r=a

= 0 �18�

4 Determination of Mode Coefficients and Dynamic
Stress Concentration

Multiple scattering of elastic waves takes place between the
real and image cavities. By satisfying the boundary conditions
around the cavities, mode coefficients of elastic waves are deter-
mined. When l=1 and the time factor is omitted, the relations
among every mode coefficient of scattered waves are written as

An
1	� cos 	Hn

�1���a� −
1

a
�nHn

�1���a� − �aHn+1
�1� ��a��


= − in	� cos 	Jn��a� −
1

a
�nJn��a� − �aJn+1��a��
 �19�

Bn
1	� cos 	�Hn

�1���a� +
1

a
�nHn

�1���a� − �aHn+1
�1� ��a��


= − i−n	� cos 	�Jn��a� +
1

a
�nJn��a� − �aJn+1��a��


�20�

when l=2,3 , . . . ,
 and the time factor is omitted, the relations
among every mode coefficient of scattered waves are written as

An
l exp�− �a cos 	�	− � cos 	Hn

�1���a�

+
1

a
�nHn

�1���a� − �aHn+1
�1� ��a��


= − Bn
l−1 exp���2b + a cos 	��	� cos 	 �

m=−





�− 1�m−n

�Hm−n
�1� �2�b�Jm��r� + �

m=−





�− 1�m−nHm−n
�1�

��2�b�
1

a
�mJm��a� − �aJm+1��a��
exp�i�m − n�	�

�21�

Bn
l exp��a cos 	��	� cos 	�Hn

�1���a�

+
1

a
�nHn

�1���a� − �aHn+1
�1� ��a��


= − An
l−1 exp���2b − a cos 	���

�	− � cos 	� �
m=−





Hm−n
�1� �2�b�Jm��a� + �

m=−





Hm−n
�1�

��2�b�
1

a
�mJm��a� − �aJm+1��a��


�exp�i�m − n�	��, �l = 2,3, . . . ,
� �22�
Equations �19�–�22� are the algebra equations determining the
mode coefficients An

l and Bn
l of the scattered waves.

In the following analysis, it is convenient to make the variables
dimensionless. To accomplish this step, we may introduce a char-
acteristic length a, where a is the radius of the cavity. The follow-
ing dimensionless variables and quantities have been chosen for
computation: the incident wave number is ka=0.01–3.0, the rela-
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tive buried depth of the cavity beneath the surface of FGMs is
b /a=1.1–10, the nonhomogeneity parameter is �a=−0.50–0.50.

According to the definition, the dynamic stress concentration
factor �DSCF� is the ratio of the hoop shear stress around the
cavity and the maximum stress �14�. Thus, the DSCF around the
circular cavity in FGMs is expressed as

DSCF = �	z
* = � �	z

�0
� �23�

�	z
* =

1

�
exp�− �a cos 	�	�a sin 	 �

n=−





inJn��a�

+ �
n=−





in+1nJn��a�
exp�in	� +
1

�
exp�− �a cos 	�

�	�a sin 	�
l=1




�
n=−





An
l Hn

�1���a� + �
l=1




�
n=−





inAn
l Hn

�1�

���a�
exp�in	� +
1

�
exp���2b + a cos 	��

�	− �a sin 	�
l=1




�
n=−





�
m=−





�− 1�m−nBn
l Hm−n

�1� �2�b�Jm��a�

+ �
l=1




�
n=−





�
m=−





�− 1�m−nimBn
l Hm−n

�1� �2�b�Jm��a�
exp�im	�

�24�

5 Numerical Examples
Fatigue failures often occur in regions with high stress concen-

tration; thus, an understanding of the distribution of the dynamic
stress is very useful in structural design. According to the expres-
sion of DSCF, the DSCFs around the circular cavity are com-
puted. It is found that the truncations after l=10 and n=m=12
gives practically adequate results at any desired frequency.

Figures 2 and 3 illustrate the angular distribution of the DSCFs
around the circular cavity with �=0 for the cases of b /a=1.1 and
b /a=5, respectively. It is clear that when the distance is b /a

=1.1 because of the multiple scattering between the cavity and the
edge, the DSCFs at the positions near the edge are greater than
that at the symmetrical positions about the y-axis, whereas at the
positions of 	=0,�, the DSCFs are minimum. When the variables
are ka=0.5,b /a=5.0, the maximum DSCFs are at the position of
	=� /2 ,3� /2, and the angular distributions of DSCFs are sym-
metric about both axes. The above results are consistent with
those in literature �3�.

Figures 4–7 display the angular distribution of the DSCFs
around the circular cavity when the nonhomogeneous parameter �
and the value of b /a are different. It can be seen that when the
incident frequent is the same, the greater the nonhomogeneity
parameter �, the greater the maximum dynamic stress around the
cavity is.

In contrast to �=0, if the nonhomogeneity parameter is ��0,
the maximum dynamic stress increases very little; however, the
position of it has a trend of shifting toward the shadow side of the
cavity. Because of the effect of boundary, the trend of shifting is

Fig. 2 Distribution of dynamic stress concentration factor
around the cavity „�=0,b /a=1.1…

Fig. 3 Distribution of dynamic stress concentration factor
around the cavity „�=0,b /a=5.0…

Fig. 4 Distribution of dynamic stress concentration factor
around the cavity „�a=−0.2,b /a=1.1…
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more evident when the distance b /a is comparatively great. In the
case of ka=0.5,b /a=5.0, the maximum dynamic stress is near the
position of 	=� /3 ,5� /3.

If the nonhomogeneity parameter is ��0, then the maximum
dynamic stress increases greatly, and the position of it has a trend
of shifting toward the illuminated side of the cavity. The trend of
shifting is more evident when the distance b /a is comparatively
little. In the case of ka=0.5,b /a=5.0, the maximum dynamic
stress is near the position of 	=2� /3 ,4� /3.

Figures 8 and 9 show the effect of nonhomogeneity parameter
�a on DSCFs at the position of 	=� /2 as a function of the di-
mensionless wave number ka for the cases of b /a=1.1 and b /a
=5.0. From Figs. 8 and 9, it can be seen that at the position of
	=� /2, if the nonhomogeneity parameter is ��0, then the fluc-
tuation of the DSCFs is little as the dimensionless wave number
varies, and the distance b /a has less effect on the dynamic stress
at 	=� /2. If the nonhomogeneity parameter is ��0, the fluctua-
tion of the DSCFs is great as the dimensionless wave number

varies, the greater the nonhomogeneity parameter, the more evi-
dent the fluctuation is. The effect of the distance on the dynamic
stress is also great when ��0. It is interesting to note that in the
case of ��0 and the distance b /a is comparatively little, the
magnitude of the fluctuation becomes bigger and bigger as the
dimensionless wave number �frequency of loading� increases.

In Figs. 10 and 11, we respectively plot the effect of dimension-
less wave number ka on DSCFs at the position of 	=� /2 as a
function of the nonhomogeneity parameter �a for the cases of
b /a=1.1 and b /a=5.0. It can be seen that when the nonhomoge-
neity parameter is less than a certain number �*, the DSCFs de-
crease with the increase of dimensionless wave number �fre-
quency of loading�, and the magnitude of the variation is
comparatively little. The DSCFs also show very little variation
with the increase of nonhomogeneity parameter, especially when
the values of b /a and wave number are great, the DSCFs show no
variation. However, when the nonhomogeneity parameter is �
��*, the variation of DSCFs is great as the wave number �fre-
quency of loading� changes, and the wave number corresponding

Fig. 5 Distribution of dynamic stress concentration factor
around the cavity „�a=−0.2,b /a=5.0…

Fig. 6 Distribution of dynamic stress concentration factor
around the cavity „�a=0.2,b /a=1.1…

Fig. 7 Distribution of dynamic stress concentration factor
around the cavity „�a=0.2,b /a=5.0…

Fig. 8 Effect of nonhomogeneity parameter on dynamic stress
concentration factor with �=� /2,b /a=1.1
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to the maximum dynamic stress has no disciplinarian. It can be
found that the greater the distance b /a, the greater the correspond-
ing value of �* is.

It is interesting to note that if the nonhomogeneity parameter
satisfies ���* and the wave number is greater than a certain
number, the DSCF at the position of 	=� /2 approaches a con-
stant value. The constant value changes as the value of b /a varies.
When b /a=1.1, it is �1.75, and when b /a=5.0, it is about
�1.45.

6 Conclusions
The elastodynamic problem of a circular cavity in a semi-

infinite functionally graded material under anti-plane impact load
is analyzed by employing image method and wave functions ex-
pansion method. The case that the cavity is free of traction is
investigated. The analytical solution and numerical solution of this
problem are presented. For the homogeneous materials, our results
are in good agreement with the solutions in previous literatures.

The nonhomogeneity parameter of materials has great influence
on the value and distribution of the dynamic stress concentration
factors around the cavity. When the nonhomogeneity parameter is
�0, the effect of it on the maximum dynamic stress is little. When
the nonhomogeneity parameter is �0, the effect is greater, and the
maximum dynamic stress increases with the increase of nonhomo-
geneity parameter. With the increase of the values of b /a, the
effect of nonhomogeneity parameter and wave number on the dy-
namic stress decreases. Thus, to reduce the dynamic stress and
avoid fatigue failures of structures, it is proposed that the nonho-
mogeneity parameter should be �0 in the x direction in Fig. 1,
namely, the shear modulus and density of semi-infinite function-
ally graded materials decrease in the x direction. The smaller the
value of b /a, the less the nonhomogeneity parameter should be.
When the value of b /a is smaller, the maximum dynamic stress
around the cavity increases greatly with a small increase of the
frequency of the impact load. Thus, we should choose a greater
value of b /a, when designing the semi-infinite functionally graded
materials under higher frequency.
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A Note on the Principle of
Maximum Dissipation Rate
The Principle of Maximum Dissipation Rate (PMD) can be exploited to derive homoge-
neous kinetic rate laws for the internal variables. A “normality structure” expressing the
rates of the internal variables as normal to convex functions (entropy production rate,
dissipation function as flow potentials) in the space of the conjugate thermodynamic
forces is a direct consequence of the PMD. This paper can be considered as a note to
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1 Introduction
The Principle of Maximum Dissipation Rate �PMD� goes back

to Onsager �1� in 1931 who introduced it for the case of transient
heat conduction. Ziegler �2–5� demonstrated, that Onsager’s origi-
nal formulation of the PMD can be generalized to arbitrary pro-
cesses obeying the laws of linear nonequilibrium thermodynam-
ics. Classical relations of applied physics, e.g., Ohm’s law of
electric resistance, Hagen/Poiseuille’s law for laminar flow, and
Fick’s first law of diffusion, can be derived in a straightforward
way. During the last 15 years the PMD has been applied to the
development of models in materials science �6–15�. The authors
have demonstrated that the PMD seems to be a handy tool for the
solution of practical problems of thermodynamics of irreversible
processes, which are often unsolvable or solvable only with great
complications in the conventional way. However, apparently the
PMD, its generalization, and its application to modeling have still
not penetrated sufficiently into the material mechanics commu-
nity. Most recently a series of papers by Yang et al. �16–19� has
appeared which looks on homogeneous kinetic rate laws derived
from flow potentials yielding a normality structure and relates
these laws to the PMD in the sense of a constraint. These papers
have motivated us to show that homogeneous kinetic rate laws
with a normality structure can directly be derived from the PMD.
This concept is valid at any length scale �e.g., also on the mi-
crolevel� and can be considered as a further justification of intro-
ducing a normality structure to the evolution equations as pio-
neered by Rice �20,21�.

2 Problem Description

2.1 Definitions. We concentrate on a thermomechanical sys-
tem whose internal structure is described by a set of internal vari-

ables �i, i=1, . . . ,n and their rates or fluxes �̇i being conjugate to
the thermodynamic forces f i defined per unit volume. Classical
continuum thermodynamics teaches that the dissipation rate fol-
lows as

d = �
1

n

�̇i f i �1�

and the entropy production rate as

�p = d/� �2�

with � being the temperature. For systems without diffusive
fluxes the f i can be replaced by −�� /��i with � being the specific
Helmholtz free energy. In the case of diffusive fluxes the reader is
referred to �22–24�. In the case of an elastic-plastic material the �i
are the components of the plastic strain state �p, the equivalent
plastic strain �pv, and strain-type quantities �p corresponding to

the back stress. The conjugate forces to the fluxes �̇i are the com-
ponents of the stress state �, the change in the yield stress �iso-
tropic hardening� �s−�s

0 with �s
0 being the initial value of the

yield stress, and the backstress a. The strain and stress compo-
nents are supposed to be collected in vectors �p, �p and �, a,
resp., see the Voigt notation.

The total entropy production function p in a system is a func-

tional of the fluxes �̇i. Since for a system out of thermodynamic
equilibrium the specific entropy production rate p must be a posi-
tive function for arbitrary fluxes �i.e., second Law of Thermody-
namics�, the Taylor expansion of p, denominated as p2 with re-
spect to the �i, truncated after three terms, must yield

p2 = �
i=1

n

�
j=1

n

�̇iRij�̇ j � 0 �3�

The matrix Rij is symmetric since Rij =1/2��2p /��̇i��̇ j� and, due to

p�0 for any �̇i�0, positive definite. The components Rij can be
functions of the thermodynamic forces f�, �=1, . . . ,n and the
temperature �. Note that p2 approaches p near the thermodynamic
equilibrium since terms with powers higher than 2 are neglected
by using p2 instead of p. For the sake of simplicity we assume a
temperature field constant in space and time, at least within each
incremental step. This means we exclude heat conduction.

An orthogonal point-transformation to a coordinate system

formed by the eigenvectors of Rij allows us to rewrite p2 with �̇i�
as the transformed variables as

p2 = �
i=1

n

�i�̇i�
2 �4�

The quantities �i, i=1, . . . ,n, are the positive eigenvalues of p2. A

further transformation �̃
˙

i=��i�̇i� yields
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p2 = �
i=1

n

�̃
˙

i
2 �5�

This operation allows us to transform p2 in “diagonal form.” A
generalized form of p2 is dealt with in Sec. 2.3.

A comparison of �2�–�5� furnishes the necessary equivalence or
energy conservation condition

p2��̇i, �̇ j� = �p �6�
if no further dissipation process is active in addition to that con-

trolled by the �̇i, i=1, . . . ,n.

2.2 Realization of the PMD. We maximize now the entropy

production rate �p �2� with respect to the fluxes �̇i, constrained by
the side condition �6� yielding

	��p + 
�p2 − �p�� = 0 �7�
As outlined in �7,11� and in detail in �25�, the Lagrange multiplier

 is found to be −1 resulting finally in a free extremum of �p
=2�p− p2 yielding

�
j=1

n

Rij�̇ j =
f i

�
�8�

or by inversion

�̇i = �
j=1

n

Rij
�−1�� f j

�
� �9�

The evolution Eq. �9� is homogeneous of order 1 in the forces f i,
i=1, . . . ,n, if the coefficients Rij

�−1� are independent of f i. Inserting
relation �9� into �3� allows us to express the dissipation function
by the forces f i as

p2 = �
i=1

n

�
j=1

n � f i

�
�Rij

�−1�� f j

�
� �10�

The components Rij
�−1� correspond to the matrix R= −1 which is the

inverse matrix of R= corresponding to Rij. Since R= is positive defi-
nite, also R= −1 is positive definite. Of course, the same result must
be obtained if p2 is maximized with the side condition �6�.

The realization of the PMD can easily be shown for a system

with two fluxes �̃
˙

1 , �̃
˙

2 with p2 in the diagonal form �5� as

p2 = �̃
˙

1
2 + �̃

˙
2
2 �p = � f̃1/���̃˙1 + � f̃2/���̃˙2

The function �p represents a plane with contour lines parallel to

the direction �̃
˙

2=− f̃1 / f̃2 · f̃
˙
. The equivalence condition �6� yields a

circular cylinder C with the basis circle according to

��̃˙1 − f̃1/2��2 + ��̃˙2 − f̃2/2��2 = � f̃1/2��2 + � f̃2/2��2

As illustrated in Figs. 1 and 2 the maximum value of the entropy

production is positioned at the point M with the coordinates �̃
˙

1

= f̃1 /�, �̃
˙

2= f̃2 /�. If p2 is maximized instead of �p, the contour
lines are circles which touch the equivalence condition exactly in
M.

It is interesting to observe that a constant value of �p yields for

any variation of �̃
˙

1, �̃
˙

2 an increase of the dissipation function,
marked by the points L and R in Fig. 1. This finally means that on
the one hand a maximum dissipation rate is sought which is on the
other hand a minimum for all admissible fluxes yielding the same
entropy production rate.

2.3 Generalization of the PMD. To obtain homogeneous
evolution laws of the order q as discussed by Yang et al. �16–19�
the total entropy production p and p2, resp., is replaced by pq as

pq = �
i=1

n

�i�̇i
�q+1�/q, �11�

note that the primes to �̇i are omitted. The quantities �i are as-
sumed to be positive, and q is selected so that pq�0 is guaran-

teed. Here one should keep in mind that �̇i may be positive or
negative. Looking for the extremum of �p+
�pq−�p� yields 
=
−q and �q= ��q+1� /q��p− pq to be freely extremized.

The first derivatives of �q with respect to �̇i, equated to zero,
yield

f i

�
= �i�i

1/q �̇i = � f i

��i
�q

�12�

The evolution Eq. �12� is now homogeneous of the order q in the
forces f i, i=1, . . . ,n. Inserting �12� into �11� results in

pq = �
i=1

n

�i� f i

��i
�q+1

�13�

The second derivatives of �q with respect to �i yield

�2�q/��̇i
2 = − ��q + 1�/q2��i�̇i

�q+1�/q−2

The sign of these derivatives is negative for proper q values,
pointing to a maximum.

3 The Normality Structure

3.1 The Flow Potential. The derivative of p2, Eq. �10� with
respect to f� /� is

Fig. 1 Identifying the position of the maximum QM of Q in the

�̃
˙

1, �̃
˙

2 plane; the lines �p=const. and p2=const. are contour
lines of the function to be maximized along C

Fig. 2 Inclined projection of the function of the entropy pro-
duction rate �p with its maximum along C
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�p2

��f l/��
= 2�

j=1

n

Rlj
�−1�� f j

�
� �14�

A comparison with �9� yields

�̇l =
1

2

�p2

��f l/��
�15�

with the consequence that the function p2 /2 can be used as a

“flow potential.” Since the vector formed by the n components �̇�
in an n-dimensional vector space is parallel to the normal to the
surface p2=const described by the vector components f� /� as
coordinates, the application of PMD automatically yields a nor-
mality structure. This is also practically valid, if the Rij

�−1� are held
constant for the next time increment, when Eq. �15� is applied to

calculate the �̇�, and afterwards updated by the current values
f� /�.

If we use pq, Eq. �13�, instead of �15� immediately

�̇l =
1

�q + 1�
�pq

��f l/��
�16�

follows. This relation agrees exactly with the findings by Yang et
al. �16–19� with respect to the normality structure. Q is their flow
potential, � is their dissipation function, Q=� / �1+q�, q is the
order of homogeneity. Trivially, the use of p2 yields in comparison
with pq that q=1. It should be noted that the current concept is
also similar to that proposed by Edelen �26� whose formulation
works with an inequality instead of the equivalence condition �6�.

3.2 Application to Plasticity. Concentrating only on plastic-
ity with isotropic hardening the dissipation rate follows as

dp = �T · �̇p = sT · �̇p �17�

s is the deviator to �. The six thermodynamic forces are the six
components of s; note that only five independent components do
exist for �̇p, s due to deviatoric properties. During a plastification
process the yield condition must be fulfilled enforcing

sT · s = 2/3 · �s
2 �18�

The value of the actual yield stress is �s which is assumed to be a
given constant quantity, at least during a certain time interval �or
a certain load increment�. As entropy production rate �3� we in-
troduce

p2 =
F��s,�;t�

�
��̇p�T · �̇p

The function F��s ,� ; t� is positive and depends on �s, � and may
also depend explicitly on the time t, to describe e.g., primary
creep. The matrix R= is simply F/� · I= with I==	ij being the unity
matrix. Equation �9� yields for �̇p with R= −1=� /F · I=

�̇p =
�

F��s,�;t�
s

�
=

s

F��s,�;t�

If this relation is inserted in p2 according to �10�, then p2 follows
as

p2 =
1

�F��s,�;t�
sT · s

Differentiation with respect to s /� yields

�̇p =
1

2

�p2

��s/��
=

s

F��s,�;t�
�19�

which identifies p2 as a flow potential with �̇p being normal to p2.
In the case of viscoplasticity F��s ,� ; t� is an a priori given func-
tion. In the case of time-independent flow plasticity F��s ,� ; t� can

be written as the product �sF̃�� ; t�. The positive function F̃�� ; t�

has to be calibrated at each time instant to meet the yield condi-

tion �18�. It turns out that F̃�� ; t� is equivalent to 2/ �3�̇pv�.
If we assume the element Rij

�−1� in �10� to be a function of the f i,

e.g., in the form of �s�s�F̃�� ; t� not being constant, then the de-
rivative of p2 with respect to f� /� �being s /�� follows with �10�
and �18�

�p2

��s/��
=

�

��s/��� 1

�s�s�F̃��;t�
� s

�
�T

·
s

�� =
�

��s/��� 2

3F̃��;t�

�s

�2�
=

1

�s�s�F̃��,t�
s �20�

Note that ��s /�s=3/2 ·s /�s.
This result, differing in the derivation above by a factor 2, is not

surprising, since p2 is now homogeneous, not of order 2 in the
forces, but a positive function being homogeneous of order 1 in
the forces, now reducing q in Yang et al. �16� from 1 to 0. The
normality structure itself is, however, conserved, if one compares
�20� and �19�.

An equivalent derivation can be performed if a deviatoric back-
stress a does exist, too. Then s is to be replaced by s−a.

3.3 A Final Remark. The reader may be aware of the “Prin-
ciple of Maximum Plastic Resistance” by Bishop and Hill, some-
times denoted as a “Principle of Maximum Plastic Dissipation,”
outlined e.g., in the Handbook �27�. This principle works at the
level of dp, Eq. �16�, by keeping the plastic strain rates fixed and
looking via the principle of virtual power for statically admissible

stress states �̃ with the dissipation d̃p= s̃T · �̇p. Then one can show
that an admissible stress state �̃ may not obtain the critical re-
solved shear stress on all the slip systems active to produce �̇p

according to the actual stress state �, yielding d̃p�dp. Any dissi-
pation function or normality structure is not engaged. Further-
more, the quantity to be varied is the stress state corresponding to

the f i instead to the �̇i corresponding to �̇p.

4 Conclusion
The Principle of Maximum Dissipation Rate �PMD� can be

used as a general principle for the derivation of evolution equa-
tions and delivers their corresponding coefficients in accordance
with Onsager’s reciprocity law as well as their normality structure
with respect to the entropy production function. If this function is
a quadratic form of the thermodynamic fluxes, e.g., the plastic
strain rates, the application of the PMD is demonstrated at the
hand of viscoplasticity and classical flow plasticity coupled with a
back stress tensor. For a more general formulation of the entropy
production function, the evolution equations introduced by Yang
et al. �16–19� with a higher order of homogeneity as well as their
normality structure can be derived by the PMD.
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Analysis of One-Dimensional and
Two-Dimensional Thin Film
“Pull-in” Phenomena Under the
Influence of an Electrostatic
Potential
A thin one-dimensional rectangular or two-dimensional axisymmetric film is clamped at
the perimeter. An electrostatic potential �V0

*� applied to a pad directly underneath the film
leads to a “pull-in” phenomenon. The electromagnetic energy stored in the capacitive
film-pad dielectric gap is decoupled from the mechanical deformation of the film using
the Dugdale-Barenblatt-Maugis cohesive zone approximation. The ratio of film-pad gap
(g) to film thickness (h), or, �=g /h, is found to play a crucial role in the electromechani-
cal behavior of the film. Solution spanning a wide range of � is found such that V0

*

��3/2 for ��0.5 and V0
*��5/2 for ��5. The new model leads to new design criteria for

MEMS-RF-switches. �DOI: 10.1115/1.2722311�

Keywords: MEMS, RF-switch, electrostatic potential, surface forces, pull-in phenomena

1 Introduction

When a thin film clamped at the perimeter is subjected to an
external force �e.g., electrostatic potential, long-range intersurface
forces�, “pull-in” occurs when a tunable surface force reaches a
threshold or when the film is brought into close proximity of a
substrate. There are numerous applications of this phenomenon,
e.g., microactuators �1,2�, micropumps �3–5�, and strain gauges
�6�. In this paper, we will focus on the operation of a MEMS
device and will allude to measurement of the range and magnitude
of intersurface forces. In a typical MEMS-RF-switch, a mechani-
cally suspended bridge is pulled by an electrostatic voltage �V0�
applied directly underneath an electrode pad �Fig. 1� �7–11�.
When V0 exceeds a certain pull-in threshold, V0

*, the bridge makes
direct contact with the pad so that either an “on” or “off” signal is
induced; and when the voltage is removed, the bridge resumes its
original undeformed configuration that induces the complemen-
tary signal. Note that the electrode pad falls short of the bridge
span in virtually all actual RF switches, but the assumption of the
same length is most commonly adopted by the literature. There is
also a two-dimensional �2D� version of this switch where a circu-
lar bridge is clamped at the perimeter. To understand the device
operation and to optimize the design parameters �e.g., dimension
of the bridge�, it is necessary to construct a rigorous elastic model
for the electromechanical interaction.

The rudimentary “lumped model” assumes a rigid rectangular
plate with one surface attached to an elastic recoil spring while
another surface interacts with a rigid substrate via the attractive
electrostatic forces. This simple parallel-plate capacitor model
predicts a pull-in event �i.e., a spontaneous collapse of the bridge
onto the electrostatic pad� to occur when the midspan of the
bridge reaches 1/3 of the bridge-pad gap �12,13�. More sophisti-
cated models became available recently to account for the fringing
field as a result of the finite bridge width, residual stress due to

fabrication and thermal expansion, inclusion of air-cushion, etc.
�14–16�. One major difficulty in formulating the exact electrome-
chanical behavior is the nonlinear governing solid-mechanics
equation, which forbids an analytical solution. In the literature,
numerical approaches using variational method with series of pre-
determined orthogonal trial functions and finite element analysis
�FEA� are devised to solve for the bridge profile and the associ-
ated device behavior �2,12,13,15,17,18�. Several limitations are
noted: �i� these solutions do not agree with one another because
some models are based on pure plate bending of the bridge, some
on pure membrane-stretching, and others on some well-defined
mathematical functions; �ii� since the normalized bridge profile
takes on a fixed shape that is unable to account for mixed plate
bending and membrane stretching; �iii� the numerical routine must
be repeated for new design in device geometry and dimension;
and �iv� the coupled electromagnetic and mechanical parameters
do not lead to well-defined design criteria. A latest approach �19�
is to adopt the Galerkin method where the electrostatic potential is
expressed in a Taylor series with the terms higher than w4 ignored.
The method is also limited to a specific set of dimension and
working parameters and might need to be repeated to cover a
range of bridge stiffnesses and thicknesses. A comparison between
the Galerkin method and our new model will be discussed.

In this paper, the electromagnetic and mechanical components
will be decoupled based on an assumption that the electrostatic
field in the bridge-pad gap is uniform, resulting in an exact ana-
lytical solution. Despite the inevitable inaccuracy involved, the
new solution is capable of formulating new design criteria as the
bridge gets thinner and shorter. The critical operational param-
eters, such as pull-in voltage and critical bridge-pad gap, will also
be derived. Deviation resulting from the uniform field assumption
will be assessed. Edge effects due to finite bridge width and anti-
clastic deformation are ignored. The one-dimensional �1D� model
will be extended to 2D.

2 Theory
Figure 1 shows a rectangular bridge mechanically clamped at

the two opposite ends and suspended above an electrode pad that
is a distance g below and has identical length as the bridge. The
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bridge is assumed to be free of prestress or residual stress and
possesses a unit width, length 2�, thickness h, elastic modulus E,
Poisson’s ratio �, and flexural rigidity, �=Eh3 /12�1−�2�. An elec-
trical potential, V0, is applied to the pad to set up a uniform elec-
tric field. The bridge is compelled and deformed by bending and a
longitudinal membrane stress � to a profile, w�x�, governed by the
classical von Kármán equation �20,21�,

�1�

where �0 is the permittivity of free space and �2 is the Laplacian
operator in the rectilinear or curvilinear coordinate systems. The
right-hand side of �1� denotes the electrostatic force on the bridge,
while the left-hand side represents the mechanical response of the
bridge in terms of the two deformation modes of plate bending
and membrane stretching, respectively. Since w�x� appears on
both sides of �1�, the coupled electromechanical equation leads to
nonlinearity and thus forbids an analytical solution. To decouple
the two components, the Dugdale-Barenblatt-Maugis cohesion
zone approximation �22� is adopted here. The electrostatic force is
replaced by a uniform mechanical pressure p, which is related to
the applied voltage by averaging the traction over the bridge span.
Equation �1� will first be solved for a 1D rectangular switch, fol-
lowed by an extension to a 2D axisymmetric film where �1� re-
mains valid for the radial profile, w�r�.

2.1 1D Rectangular Switch. For a 1D switch, a rectangular
film is clamped at the opposite ends. A set of normalized param-
eters is defined in Appendix A.2 Note that 	 gages the ratio of
membrane stress to film rigidity such that �i� 	�0 corresponds to
a plate-bending dominant deformation in a thick and stiff bridge

and �ii� 	→
 refers to a membrane-stretching dominant defor-
mation in a thin and flexible bridge. A few boundary conditions
are noted,

�i� At the clamped ends:

wx=0 = 0 or ��=0 = 0

��w/�x�x=0 = 0 or ���/����=0 = 0

�ii� At the center:

��w/�x�x=� = 0 or ���/����=1 = 0

Applying the cohesive zone approximation, �1� becomes

− ��4w + ��h��2w = − p or
d4�

d�4 − 	2d2�

d�2 =  �2�

with the equivalent pressure

p =
�0V0

2

4� �
0

2�
dx

�g − w�x��2 or  = �0
2�

0

1
d�

�� − �����2 �3�

Equation �2� can be reduced to a second-order linear differential
equation �23� that leads to an exact analytical bridge profile

� = � 1

	3�	 1

tanh 	
�cosh�	�� − 1� − sinh�	�� + 	�� −

�2

2
�


�4�

with a central deflection, �0=���=1�,

�0 = � 1

	3�	 1

tanh 	
�cosh 	 − 1� − sinh 	 +

	

2

 �5�

Note that �4� is a rigorous solution of �2�, rather than a predeter-
mined profile, as in most variational methods in the literature �cf.
Table 1�. Figure 2 shows the changing bridge profiles for a range
of 	. The volume of the reduced dielectric space between the
bridge and pad is found by integrating �4�

V =�
0

2�

w dx or � =�
0

1

2� d� = � 2

	4��1 +
	2

3
−

	

tanh 	
�
�6�

The uniform membrane stress on the bridge can be found by el-
ementary elasticity �23,24�

� =
1

2�
� E

1 − �2��
0

2�
1

2
�dw

dx
�2

dx or 	2 = 6�
0

1 � ��

��
�2

d�

�7�

Substituting �4� into �7� yields

 =
	4 sinh 	

��6 + 	2�cosh�2	� − 9	 cosh 	 sinh 	 − 6 − 4	2�1/2 �8�

By eliminating 	 from �5� and �8�, the mechanical response,
��0�, can be obtained, though it is a mathematically formidable
task because of the transcendental functions sinh�x� and cosh�x�.
An alternative to derive the exact form of ��0� is to trace a
parametric plot of ��0� by taking 	 as a varying parameter since
both  and �0 are functions of 	 �Fig. 3�. The bending to stretch-
ing transition can be expressed in an alternative manner as

 = k�	��0
n�	� �9�

where both k�	� and n�	� are well defined functions of 	. If ��0�
is shown in a log-log plot, n�	� is the gradient and is defined as

n =
d�log �

d�log �0�
=

�0


� d

d�0
� �10�

The exact form of n�	� can be found by MATHEMATICA™, though
it is too lengthy to be given here. Figure 4 shows n as a function

2Note that Ref. �19� normalizes w and V0 using g instead of h as in the present
work. It will become apparent that normalization using h will lead to a better de-
scription of the mixed bending-stretching bridge behavior.

Fig. 1 Sketch of a typical MEMS-RF switch. The suspended
bridge deforms in the presence of an electrostatic force in-
duced by the electrode-pad directly underneath.
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of 	 with 1�n�3.
Deformation of the bridge is bounded by two limiting cases. In

case of a thick and stiff bridge, the deformation is small ��0
�0.5�, the membrane stress is negligible ���0 and 	�0�, and
only plate bending is present. It can be easily shown that �4�–�6�
and �10� reduce to �bend= � /24��2��−2�2, =24�0, �
= �16/15��0, and n=1, respectively, which is consistent with the
classical Timoshenko’s linear solution �24� shown in Figs. 2–4 as
asymptotes. In case of a thin and flexible bridge with a zero bend-
ing inertia ��=0�, the deformation is large ��0�5�, the normal-
ized membrane stress becomes infinite �	→
� and only mem-
brane stretching is present. The bridge behavior now becomes
�stretch= � /	2���−�2 /2�, =16�0

3, �= �4/3��0, and n=3. Note
that �stretch is parabolic such that ��� /����=0 is undefined, which
violates boundary condition �i�. However, a film with zero flexural
rigidity does not require a differentiable profile at the clamped

edges. Figures 2–4 show the membrane-stretching asymptotes.
Note that ��0� for membrane stretching is cubic �Fig. 3� and is
consistent with our earlier results for rectangular film deformed by
a central line load �23,25�. When the deformation is intermediate
�0.5��0�5�, mixed bending stretching must be considered. The
transition can be arbitrarily taken as the intersection between the
two limiting cases in Fig. 3 and is roughly �0�1.20. Here, 1
�n�3 and 16/15� �� /�0��4/3.

There are two ways to investigate the electromechanical behav-
ior of the RF switch: �i� The first and most common method is to
balance the mechanical force due to bridge deformation �cf. �5�
and �8�� and the electrostatic attraction due to applied voltage �3�,
and �ii� a balance of electromagnetic and mechanical energy in-
volved. The stretching limit is chosen in this section to demon-
strate the general behavior that is applicable also to mixed
bending-stretching films. Figure 5 shows the mechanical and elec-
trostatic forces for a range of applied voltage. When the applied
voltage increases from null, there are two distinct intersections
between the force curves at A and B as shown. It will become
apparent that A corresponds to a stable configuration while B is
unstable. As �0 increases further, ��0�A and ��0�B move closer

Table 1 Comparison of the pull-in parameter „w0
* /g…

Methods Pull-in �w0
* /g�

1D and 2D lumped model �12,13�
Assumption: rigid plates with

one attached to an elastic spring
and another stationary

1/3=0.3333

1D Variational method �15�
Trial function: �=�0 cos2����

1/3=0.3333

1D Variational method �18�
Trial functional: �=�0�2��−1�2

�0.45

1D Energy method for multi-layered bridge �17�
Trial function: �= ��0 /2��1+cos�2����

0.40–0.67

1D Galerkin method �19� 0.55 �zero residual stress�
0.42–0.63 �range of residual stress�

1D Present work 0.4545–0.6791 �force balance�
0.3970–0.6583 �energy balance�

2D Variational method �2�
Trial function:
�=C1J0��m

1/2r�+C2I0��m
1/2r�

�0.40

2D Present work 0.5723–0.7500 �force balance�
0.4633–0.7135 �energy balance�

Fig. 2 Normalized bridge deformed profile as a function of
membrane stress. The bridge anchors at �=0 and has its mid-
span at �=1. The dashed curves show the plate-bending and
membrane-stretching limits.

Fig. 3 Mechanical response of the bridge under a uniform
pressure across the span. The dashed curves show the plate-
bending and membrane-stretching limits.
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until they converge to C. Further increase in �0��0
* �with the

superscript asterisk denoting pull-in hereafter� leads to pull-in, i.e.
spontaneous collapse of the bridge onto the electrode pad. The
electromechanical force balance is maintained along path OAC.

The device behavior can be further scrutinized by a simple
energy balance. The total energy of the system is given by UT
=UC−UE, where UC and UE are the energies stored in the capaci-
tive dielectric medium at the bridge-pad gap and in the elastic
bridge, respectively,

UE = −� p dV or �E = −�
0

	

�	�
��

�	
d	 �11�

UC = −
�0V0

2

2 �
0

2�
dx

g − w�x�
or �C = − 2�0

2�
0

1
d�

� − ��	,��

�12�
Figure 6 shows the energetics of the device. Since the bridge is
bounded by the gap, 0�w0�g or 0� ��0 /���1. As �0 increases

from null, the bridge deforms. Therefore, both �E and �C are
monotonic decreasing in ��0 /��, and �T=�C−�E is shown as
OABC. At a nonzero �0, the bridge moves to a stable equilibrium
at A where �T is minimal. An unstable equilibrium is found at B.
Figures 7�a� and 7�b� shows �T��0� for a range of fixed �0 and
�T��0 ,�0�, respectively. As �0 increases, ��0�A and ��0�B move
close to each other and eventually merge at C, corresponding to a
neutral equilibrium. Further increase in �0 leads to pull-in. Energy
balance is maintained along path OAA�C. The branch CB�B is
obtained mathematically but is physically inaccessible. The stable
equilibrium at A can be found by putting ���T /��0�=0 and
��2�T /���0�2��0. At pull-in at C, ��2�T /���0�2�=0, resulting in
a point of inflexion. Exact solution for the pull-in parameters �0

*

and �0
* can be derived for the limiting cases of bending and

stretching only, while the mixed bending-stretching behavior re-
quires numerical integration.

The switch behavior depends significantly on the bridge-pad
gap. Figure 8 shows ��0

* /�� as a function of the bridge-pad gap �.
In theory, the force and energy balance should yield identical re-
sults. However, the cohesive zone approximation leads to a small
inconsistency as shown in the shaded region, which cannot be
resolved by the present model. Pull-in is expected anywhere
within this zone. In fact, Fig. 5 shows �0

*=1.02 �force balance�,
whereas Fig. 7 shows �0

*=0.92 �energy balance� for the stretching
limit. A bending-stretching transition occurs roughly at g�1.2h,
i.e., when the bridge-pad gap is slightly larger than the bridge
thickness. A thick and stiff bridge combined with a small gap with
g�0.5h leads to a bending dominant mode, while a thin �and
flexible� bridge with a large gap with g�5h leads to a stretching
dominant behavior. Bridges with the intermediate thickness and
gap �0.5h�g�5h� requires the full bending-stretching solution.
Force balance requires 0.455� ��0

* /g��0.679 and energy balance
requires 0.397� �w0

* /g��0.658, with the lower and upper limits
referring to the pure bending and pure stretching modes,
respectively.

Figure 9 shows the pull-in voltage �0
* as a function of the

bridge-pad gap. It can be easily shown that �0
*��3/2 in the plate-

bending limit and �0
*��5/2 in the membrane-stretching limit. A

small difference between force and energy balances is found as
shown by the narrow shaded strip. In the bending limit, �0

*

=2.342 �3/2 �force balance� and �0
*=2.101 �3/2 �energy balance�.

In the stretching limit, �0
*=1.023 �5/2 �force balance� and �0

*

Fig. 4 The gradient n„�0… of the mechanical response �„�0…

Fig. 5 Forces acting on the bridge in the stretching limit, with
the attractive electrostatic force shown as dashed curves for a
range of applied voltage, and the cubic mechanical force on the
bridge shown as dark curve „OACB…. Stable equilibrium is
maintained along the path OAC. Pull-off occurs at C.

Fig. 6 Energetics of the MEMS-RF switch with �0=1.00 in the
stretching limit, showing various energy terms as functions of
bridge central displacement
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=0.916 �5/2 �energy balance�. Bending-stretching transition oc-
curs roughly at g�2.5h where the two limiting cases intersect.

2.2 2D Axisymmetric Switch. Figure 10 shows a 2D axisym-
metric MEMS-RF-switch clamped at the circular perimeter. The
set of normalized parameters is redefined as in Appendix B. The
elastic deformation equation �1� remains valid, though the exact
solution to the axisymmetric problems requires a nonlinear von
Kármán equation in cylindrical coordinates to be solved. To avoid
the mathematical complexity, an average stress approximation is
adopted �i.e., �=�r=�t� in association with the cohesive zone
approximation. The boundary conditions are given by

�iii� At the clamped circumference:

wr=a = 0 or ��=1 = 0

��w/�r�r=a = 0 or ���/����=1 = 0

�iv� At the center:

��w/�r�r=0 = 0 or ���/����=0 = 0

Equation �1� is reduced to the modified Bessel equation �26� with
the profile gradient given by

�2�2�

��2 + �
��

��
− �1 + 	2�2�� = �3 �13�

with the apparent mechanical pressure on the film is given by

p =
�0V0

2

2�a2�
0

a
2�r dr

�g − w�r��2 or  = �0
2�

0

1
� d�

�� − �����2 �14�

Equation �13� can be solved analytically to yield the film profile

� = � 1

	3I1�	�
�		

2
�1 − �2�I1�	� + I0�	�� − I0�	�
 �15�

with a central deflection

�0 = � 1

	3I1�	�
�		

2
I1�	� − I0�	� + 1
 �16�

The corresponding average membrane stress is given by

Fig. 7 „a… Total energy as a function of central bridge displace-
ment for a range of applied voltage in the stretching limit.
Stable equilibrium is maintained along the path OAA�C. Path
CB�B is unstable and physically inaccessible. Pull-in occurs at
C. „b… Total energy as a function of both central bridge dis-
placement and applied voltage.

Fig. 8 Pull-in „w0
* /g… as a function of the bridge-pad gap. Both

force and energy balances are shown. Pull-in occurs within the
shaded area.

Fig. 9 Pull-in voltage as a function of the bridge-pad gap. Both
force and energy balances are shown. Pull-in occurs within the
shaded area. The dashed lines show the plate-bending and
membrane-stretching limits.
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� =
1

2a2� E

1 − �2��
0

a �dw

dr
�2

r dr or 	2 = 6�
0

1 � ��

��
�2

� d�

�17�
which yields a relation between pressure and membrane stress

 =
	7/2I1�	�

��9	/2�I1�	�2 − 3I2�	��	I0�	� + 4I1�	��1/2 �18�

The volume of the reduced dielectric space is found to be

V =�
0

a

w2�r dr or � =�
0

1

2�� d� = � 1

	4��2 +
	2

4

−
	I0�	�
I1�	� � �19�

The mechanical response, ��0� can be obtained by eliminating 	
from �16� and �18�. The bending to stretching transition 

=k�	��0
n�	� is similar to the 1D counterpart with 1�n�3. The

limiting plate-bending solution becomes �bend= � /32��1−�2�2, 
=32�0, n=1, and �= �1/3��0. The limiting membrane-stretching
solution becomes �stretch= � /2	2��1−�2�, =12�0

3, n=3, and �
= �1/2��0.

The energetics and pull-in phenomenon for a 2D film is derived
by the similar energy balance method as in the 1D model. Figures
11�a� and 11�b� show �T��0� for a range of fixed �0 and
�T��0 ,�0�, respectively. The trajectory OAA�C traces the energy
balance locus, and pull-in occurs at C. Figure 12 shows ��0

* /�� as
a function of �. A shaded region of uncertainty is found because
of the discrepancies due to the average membrane stress approxi-
mation and the cohesive zone approximation. Figure 13 shows
�0

*���. Similar to the 1D model, �0
*��3/2 is expected in the bend-

ing limit and �0
*��5/2 in the stretching limit. In summary, �0

*

=4.483 �3/2 �force balance� and �0
*=3.773 �3/2 �energy balance� in

the bending limit ���2�; �0
*=1.591 �5/2 �force balance� and �0

*

=1.338 �5/2 �energy balance� in the stretching limit ���4�, and
the transition at ��3.

3 Discussion
A solid mechanics model is derived for the electromechanical

deformation of a bridge in a capacitive MEMS-RF switch and the
associated pull-in phenomenon for both 1D and 2D. The analyti-

cal solution has certain advantages over the existing models in
formulating the design criteria. First, the combinatorial influences
on the device are derived analytically �27� in terms of �i� materials
parameters–elastic modulus, Poisson ratio, and flexural rigidity of
bridge; �ii� geometrical parameters—bridge-pad gap separation,

Fig. 10 Sketch of a 2D axisymmetric MEMS-RF switch

Fig. 11 „a… Total energy �T„�0 ,�0… for fixed �0 in the stretching
limit. Pull-in occurs at C. „b… Total energy �T„�0 ,�0….

Fig. 12 Pull-in „w0
* /g… as a function of the bridge-pad gap
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bridge length and thickness; and �iii� structural index—mixed
bending-stretching deformation, and the limiting cases of pure
bending and pure stretching. Second, the ratio of gap to bridge
thickness �g /h� is found to play a critical role in determining the
pull-in voltage. The relations for a bending bridge ��0

*��3/2� and a
stretching bridge ��0

*��5/2� are crucial in designing the device and
assessing the performance, especially when the device dimensions
shrink from micro- �MEMS� to nanoscale �NEMS�. Note that the
actual �g /h� ratio in most actual devices falls in the range of
0.5–5. The pull-in voltage in the plate-bending limit is consistent
with literature �17,28�, but the bending-stretching transition and
the stretching limit are virtually unavailable in current literature.
Table 1 compares the present work to various existing models. It
is remarkable that the celebrated lumped model predicts the small-
est �w0

* /g�=1/3 and underestimates the critical pull-in voltage.
Our new model essentially covers the entire range of literature
values �besides the lumped model� and shows the bending-
stretching transition to be the main cause of inconsistencies in the
literature values. Most existing models do not allow bridge profile
change �w /w0� as the gap widens and are therefore incapable of
predicting the bending-stretching in the electromechanical behav-
ior. Third, when an AC voltage is applied to the electrode pad, the
resonance frequency of the bridge is determined by the governing
constitutive relation, � ��0�n, with n=1 for thick and stiff bridge
and n=3 for thin and flexible bridge. In the linear bending region,
resonance can be investigated using the simple harmonic motion
equation, but deviation is expected as the gap widens. For in-
stance, the nonlinear van der Pol equation will be needed to solve
for n=3 �29�. Failure to realize the bending-stretching transition
in design will undermine the device performance.

The present model can be extended to include other important
parameters not covered above. For instance, residual stress ��0�
due to thermal mismatch is inevitable during device fabrication
and operation. To accommodate its effect, the total membrane
stress in Eq. �1� is rewritten as �=�0+�m, where �m is the con-
comitant stress due to change in bridge profile. Similarly, � in Eq.
�7� will be replaced by �m. The new constitutive relation and the
subsequent pull-in parameters will yield useful information for
switch design and can be checked against literature �e.g., �18,19��,
though it is beyond the present scope. Another interesting exten-
sion is that of pull-off. When the electrostatic potential is turned
off, the bridge adhered to the pad is expected to detach from the
substrate and resume its underformed geometry reversibly. How-
ever, in the presence of undesirable intersurface forces �e.g., cap-
illary at high relative humidity, stray charges on surfaces�, the

bridge must overcome the energy barrier in order to delaminate
from the substrate. The thin-film delamination mechanics can be
obtained using the present model. In fact, we have investigated the
delamination mechanics of a clamped circular film earlier for an
ideal zero-range surface force, and derived the critical mechanical
force, bridge-pad gap, and radius at “pull-off” �30�. The model
can be modified to allow transformation from 2D to 1D.

Another related area alluded to in the Introduction is the mea-
surement of long-range intrinsic surface forces, such as van der
Waals potential or stray charges left at the interface, etc. Such
interactions can be incorporated into the present model by assign-
ing an extra term on the right-hand side of �1� according to the
Dugdale-Barenblatt-Maugis cohesive zone theory. In an earlier
paper, we reported how a small graphite cylinder compelled a
clamped silicone film into adhesive contact by means of a long-
range surface force �31�. A solid mechanics model was also con-
structed to account for the subsequent delamination and pull-off.
The present theoretical model here presents a thorough analysis
for the pull-in event prior to the adhesion contact between the two
adherends and is capable of analyzing the magnitude and range of
surface forces involved. Since the intrinsic intersurface force po-
tential is not tunable as in the MEMS switch but a fixed function,
depending on the materials nature and the dielectric gap, one nec-
essary modification to the present model is to allow the film-
substrate gap to vary. Detailed analysis is beyond the scope of the
present work.

4 Conclusion
Understanding the performance of a MEMS-RF switch in terms

of the device geometry, materials, and structural index is crucial in
the design criteria. In this study, a rigorous analytical elastic
model is derived to account for the bridge deformed geometry and
its effects on the pull-in voltage and other pull-in parameters. The
ratio of bridge-pad gap to bridge thickness �g /h� is found to play
a significant role in the device behavior.

Acknowledgment
This work is funded by National Science Foundation �Grant

No. CMS-0527912� and University of Missouri Research Board
�Grant No. 2428�.

Appendix A: Normalized Parameters for the 1D Model
Coordinates and profile

� = �1

�
�x, � = �1

h
�w, �0 = �1

h
�w0, � = � 1

h�
�V

Device geometry �bridge-pad gap�

� = �1

h
�g

Electrostatic potential �applied voltage�

�0 = � �0�4

2�h3�1/2

V0

Membrane stress

	 = ��2h

�
�1/2

�1/2

Equivalent pressure

 = � �4

�h
�p

Energies involved

�E = � �3

�h2�UE, �C = � �3

�h2�UC, �T = � �3

�h2�UT

Fig. 13 Pull-in voltage as a function of the bridge-pad gap.
Pull-in occurs within the shaded area.
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Appendix B: Normalized Parameters for the 2D Model
Coordinates and profile
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Parametric Formulation of the
Finite-Volume Theory for
Functionally Graded
Materials—Part I: Analysis
The recently reconstructed higher-order theory for functionally graded materials is fur-
ther enhanced by incorporating arbitrary quadrilateral subcell analysis capability
through a parametric formulation. This capability significantly improves the efficiency of
modeling continuous inclusions with arbitrarily-shaped cross sections of a graded mate-
rial’s microstructure previously approximated using discretization based on rectangular
subcells, as well as modeling of structural components with curved boundaries. Part I of
this paper describes the development of the local conductivity and stiffness matrices for
a quadrilateral subcell which are then assembled into global matrices in an efficient
manner following the finite-element assembly procedure. Part II verifies the parametric
formulation through comparison with analytical solutions for homogeneous curved struc-
tural components and graded components where grading is modeled using piecewise
uniform thermoelastic moduli assigned to each discretized region. Results for a hetero-
geneous microstructure in the form of a single inclusion embedded in a matrix phase are
also generated and compared with the exact analytical solution, as well as with the
results obtained using the original reconstructed theory based on rectangular discretiza-
tion and finite-element analysis. �DOI: 10.1115/1.2722312�

Keywords: functionally graded materials, finite-volume theory, parametric formulation

1 Introduction
Functionally graded materials �FGMs� are multiphase materials

with engineered microstructures which produce property gradients
aimed at optimizing structural response under different types of
loads �thermal, mechanical, electrical, optical, etc.�. These prop-
erty gradients are produced in several ways, for example by
gradual variation of the content of one phase �ceramic� relative to
other �metallic� used in thermal barrier coatings, or by using a
sufficiently large number of constituent phases with different
properties. Developed by Japanese researchers in the mid-1980s,
these materials continue to evolve and to find new applications in
areas other than the thermal protection/management structures for
which they had been originally developed, cf. Suresh and
Mortensen �1�, Miyamoto et al. �2�, Paulino �3�, Chatzigeorgiou
and Charalambakis �4�.

The use of graded material concepts in structural design and
optimization requires the development of appropriate analysis
techniques which account for the spatially variable microstruc-
tures in this class of materials. Presently, there are two approaches
available to analyze the response of FGMs to thermomechanical
loads, called coupled and uncoupled approaches, Pindera et al.
�5�. In the uncoupled approach, the graded material’s microstruc-
ture is replaced by equivalent homogenized properties which are
either determined from micromechanics considerations or as-
sumed a priori. This results in a boundary-value problem with
either continuously or discretely variable elastic moduli at the
scale at which the analysis is conducted, called macroscale. In the
coupled approach originally proposed by Aboudi et al. �6�, and
summarized in a review paper by Aboudi et al. �7�, the material’s
microstructure is explicitly taken into account by performing the

analysis at the microscale. In particular, in the original formula-
tion of this so-called higher-order theory, a two-step discretization
involving generic cells and subcells is employed to capture the
graded material’s heterogeneous microstructure. Subsequently,
thermal and displacement fields within each subcell are approxi-
mated using quadratic expansions in local coordinates, and the
unknown coefficients associated with the different-order terms are
obtained by satisfying various moments of the field equations in a
volume-averaged sense in each subcell, followed by the applica-
tion of continuity conditions within each generic cell, and between
adjacent cells, in a surface-average sense together with the im-
posed boundary conditions. We mention that surface averaging of
continuity conditions was proposed by Achenbach �8� in the con-
text of the author’s cell model for unidirectional composites.

This approach has recently been reconstructed by Bansal and
Pindera �9� and Zhong et al. �10� based on a simplified volume
discretization using subcells as the fundamental subvolumes, in
place of the two-level discretization employed in the original con-
struction. The use of subcells as the fundamental subvolumes, in
turn, facilitated the implementation of the local/global stiffness
matrix formulation, Bufler �11�, Pindera �12�, into the solution
procedure for the unknown subcell surface-averaged interfacial
displacements which became the primary unknown quantities in
the reconstructed theory. The reconstruction has also revealed that
the model’s theoretical framework is based on direct satisfaction
of the field equations within each subcell, in contrast to the origi-
nal construction wherein higher-order moments of the equilibrium
equations were also satisfied, thereby erroneously suggesting this
model to be a version of a micropolar continuum theory. The
significantly simplified theoretical structure of this so-called
higher-order theory in conjunction with the implementation of the
local/global stiffness matrix approach also resulted in a substantial
reduction in the final system of equations for the unknown quan-
tities, thereby making it possible to analyze realistic graded mi-
crostructures that required extensive discretization not possible
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with the theory’s original formulation. Equally important, the re-
construction has revealed the method to be a finite-volume direct
averaging technique with clearly discernible similarities and dif-
ferences between the finite-volume technique used in fluid dynam-
ics problems, cf. Versteeg and Malalasekera �13�, and the finite-
element method, as reported by Pindera et al. �14�. This
reconstruction made it possible to further develop the method in
order to increase its efficiency and applicability.

In this communication, we continue the development of the
reconstructed Cartesian-version of the theory, herein referred to as
the standard finite-volume theory, by incorporating parametric
mapping capability in order to enable efficient modeling of micro-
structures that cannot be easily modeled using rectangular subcells
employed in the standard theory. The parametric formulation of-
fers the same flexibility as the finite-element method for modeling
microstructures and geometries with curved and rectilinear fea-
tures, while retaining its quick convergence characteristics in the
presence of highly heterogeneous microstructures. We begin by
providing a brief outline of the reconstructed finite-volume theory
in order to set the stage for the parametric formulation.

2 The Finite-Volume Theory for Functionally Graded
Materials

In the standard version of the finite-volume theory for FGMs,
the material microstructure is discretized into N� columns, each of
width h�, spanning the distance H along the x2-axis, and N� rows,
each of height l�, spanning the distance L along the x3-axis, Fig. 1.
This results in a grid of N��N� �� ,�� subcells of h�� l� dimen-
sions, which is used to approximate the heterogeneous microstruc-
ture by assigning appropriate moduli to each subcell. The tem-
perature and displacement fields are approximated in each subcell
using quadratic expansions in the local subcell coordinates
�x̄2

��� , x̄3
���� attached to the subcell’s center. For the thermal prob-

lem we have

T��,�� = T�00�
��,�� + x̄2

���T�10�
��,�� + x̄3

���T�01�
��,�� +

1

2
�3x̄2

���2 −
h�

2

4
�T�20�

��,��

+
1

2
�3x̄3

���2 −
l�
2

4
�T�02�

��,�� �1�

The heat flux components qi
��,�� at any point passing through a

subcell �� ,�� are then obtained from the Fourier’s law of heat
conduction

qi
��,�� = − ki

��,���T��,��

�x̄i
�·� �i = 2,3; no sum� �2�

where ki
��,�� are the heat conductivity coefficients of the material

in the subcell �� ,��. For the mechanical problem

ui
��,�� = Wi�00�

��,�� + x̄2
���Wi�10�

��,�� + x̄3
���Wi�01�

��,�� +
1

2
�3x̄2

���2 −
h�

2

4
�Wi�20�

��,��

+
1

2
�3x̄3

���2 −
l�
2

4
�Wi�02�

��,�� �3�

where i=2,3 for plane problems. The stress components at any
point within the �� ,�� subcell are obtained, upon the use of strain-
displacement equations, from the generalized Hooke’s law

�ij
��,�� = Cijkl

��,���kl
��,�� − �ij

th��,�� �4�

where �ij
th��,��=Cijkl

��,���kl
��,��

�T=�ij
��,��

�T.
Subsequently, conductivity and stiffness matrices are con-

structed for each subcell by relating the surface-averaged tempera-

ture and displacement vectors, T̄��,�� and ū��,��, to the correspond-

ing surface-averaged heat flux and traction vectors, Q̄��,�� and
t̄��,��, whose components are

T̄��,�� = �T̄2+,T̄2−,T̄3+,T̄3−���,��T

Q̄��,�� = �Q̄2
2+,Q̄2

2−,Q̄3
3+,Q̄3

3−���,��T

ū��,�� = �ū2
2+, ū3

2+, ū2
2−, ū3

2−, ū2
3+, ū3

3+, ū2
3−, ū3

3−���,��T

t̄��,�� = �t̄2
2+, t̄3

2+, t̄2
2−, t̄3

2−, t̄2
3+, t̄3

3+, t̄2
3−, t̄3

3−���,��T �5�

where the superscripts 2, 3 identify the direction of the unit nor-
mal to the given face relative to the fixed subcell coordinates
�x̄2

��� , x̄3
����, and 	 denote the actual sense. The subscripts 2, 3

denote a vectorial quantity’s component. Traction components are
expressed in terms of stress components associated with a particu-
lar subcell face through Cauchy’s relations

ti
n��,��

= � ji
��,��nj

��,�� �6�

and n��,�� is the unit normal to a given face of the �� ,�� subcell.
Finally, the surface averages are defined in the standard way, as
for example

T̄2±��,�� =
1

l�
�

−l�/2

l�/2

T��,���±
h�

2
, x̄3

����dx̄3
���

T̄3±��,�� =
1

h�
�

−h�/2

h�/2

T��,���x̄2
���, ±

l�

2
�dx̄2

��� �7�

for the surface-averaged temperatures, with similar expressions
for the remaining field variables.

For the thermal problem, there are five coefficients which must
be related to the four surface-averaged temperatures. Four rela-
tions are provided by the definitions of the surface-averaged tem-
peratures. Satisfaction of the heat conduction equation in the large

�
S��,��

qi
��,��ni

��,��dS = 0 �8�

provides the additional relation required in the local conductivity
matrix construction carried out by averaging the heat flux equa-
tions along each of the four faces, which yields

Q̄��,�� = ���,��T̄��,�� �9�
For the mechanical problem, there are ten coefficients which

must be related to the eight surface-averaged displacement com-
ponents. Eight relations are provided by the definitions of the

Fig. 1 Simplified discretization of a graded microstructure
„left… into rectangular subcells with the local coordinate system
x2
„�…−x3

„�…
„right… used in the reconstructed finite-volume theory
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surface-averaged displacement components. The additional two
equations are obtained by satisfying the stress equilibrium equa-
tions in each subcell in the large

�
S��,��

ti
n��,��

dS = 0, i = 2,3 �10�

Evaluating the surface-averaged traction components on each face
of the �� ,�� subcell leads to the local stiffness matrix relation of
the form

t̄��,�� = K��,��ū��,�� + ���,��T̄��,�� �11�
Assembly of the local conductivity and stiffness matrices by

enforcing the continuity of both surface-averaged temperatures
and displacements, and heat fluxes and tractions, together with the
specified boundary conditions, determines the unknown surface-
averaged temperatures and displacements from which local fields
are obtained through constitutive and gradient relations. In this
approach, the redundant temperature and displacement continuity
equations are eliminated by setting the surface-averaged tempera-
tures and displacements at the interfaces associated with the adja-
cent subcells �� ,��, ��+1,��, and �� ,��, �� ,�+1� to common
unknowns,

T̄2+��,�� = T̄2−��+1,�� = T̄2��+1,�� T̄3+��,�� = T̄3−��,�+1� = T̄3��,�+1�

ūi
2+��,�� = ūi

2−��+1,�� = ūi
2��+1,�� ūi

3+��,�� = ūi
3−��,�+1� = ūi

3��,�+1�

i = 2,3 �12�
upon application of the heat flux and traction continuity condi-
tions at these common interfaces

Q̄2
+��,�� − Q̄2

−��+1,�� = 0 Q̄3
+��,�� − Q̄3

−��,�+1� = 0

t̄i
2+��,�� + t̄i

2−��+1,�� = 0 t̄i
3+��,�� + t̄i

3−��,�+1� = 0 i = 2,3

�13�
The resulting global thermal conductivity matrix relates the un-

known interfacial surface-averaged temperatures �including those

at the external boundaries� represented by T̄ to the corresponding

surface-averaged heat fluxes represented by Q̄

�T̄ = Q̄ �14�

The vector Q̄ consists mainly of zeros which are obtained after
applying interfacial heat flux continuity conditions across each
interface separating adjacent subcells, with the nonzero terms rep-
resenting surface-averaged heat fluxes along each portion of the
discretized boundary. The above system of equations is modified
accordingly when the boundary conditions are specified in terms
of applied temperatures. Similarly, the resulting global stiffness
matrix relates the unknown interfacial surface-averaged displace-
ments �including those at the external boundaries� to the surface-
averaged tractions prescribed at the external boundaries

KŪ = t̄ + �T̄ �15�
with the known surface-averaged temperatures obtained from the
solution of the thermal problem. The above system of equations is
then reduced to eliminate rigid body motion, and modified accord-
ing to the specified boundary conditions.

3 Parametric Formulation of the Finite-Volume
Theory

The parametric formulation enables the use of quadrilateral
subcells in approximating the heterogeneous microstructure of a
graded material, thereby making the modeling of microstructural
details with curvilinear boundaries more efficient, as illustrated in
Fig. 2 for a single inclusion in a matrix phase approximated by

rectangular and quadrilateral subcells. It is based on a mapping of
a reference square subcell in the 
-� plane onto a subcell in the
x-y plane of the actual microstructure. The mapping facilitates the
development of local conductivity and stiffness matrices for a
quadrilateral subcell situated in the actual microstructure that re-
late surface-averaged temperatures and displacements to the cor-
responding heat fluxes and tractions acting on arbitrarily oriented
rectlinear surfaces.

The important distinction between the parametric formulation
and the version based on rectangular subcells described in Sec. 2
is the absence of a local coordinate system associated with each
subcell in the actual microstructure. Rather, global coordinates are
employed to describe the locations of quadrilateral subcell verti-
ces in the actual microstructure, and thus the subcell’s placement.
Global reference indexes are also assigned to the four faces of
each subcell in the actual microstructure which are employed in
the construction of the connectivity matrix used to apply interfa-
cial continuity and balance conditions in the assembly of the glo-
bal conductivity and stiffness matrices. These indexes define the
location of the local conductivity and stiffness matrix elements in
the global systems of equations. We begin by describing the co-

Fig. 2 Discretization of a square region containing a circular
inclusion: „a… discretization based on 900 rectangular subcells;
„b… discretization based on 500 quadrilateral subcells
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ordinate transformations associated with the mapping, and then
outline transient and mechanical analyses based on this parametric
mapping technique in the following sections.

In the parametric formulation, the reference subcell is a square
in the 
-� plane bounded by −1��� +1 and −1�
� +1. As
shown in Fig. 3, the vertices �−1,−1� of the reference subcell
correspond to the vertices �x1 ,y1� of the jth subcell in the actual
discretized microstructure. The vertices are numbered such that
the first set �x1 ,y1� is at the lower left corner and the numbering
convention increases in a counterclockwise fashion. The faces are
numbered similarly such that the face Fi lies between the vertices
�xi ,yi� and �xi+1 ,yi+1� with i+1→1 when i=4. Thus the compo-
nents of the unit normal vector n�i�= �nx

�i� ,ny
�i�� to the face Fi are

given by

nx
�i� =

yi+1 − yi

Li
ny

�i� =
xi − xi+1

Li

where

Li = ��xi+1 − xi�2 + �yi+1 − yi�2 �16�

The mapping of the point �
 ,�� in the reference subcell to the
corresponding point �x ,y� in the subcell of the actual discretized
microstructure is given by, Cavalcante �15�,

x�
,�� = N1�
,��x1 + N2�
,��x2 + N3�
,��x3 + N4�
,��x4

y�
,�� = N1�
,��y1 + N2�
,��y2 + N3�
,��y3 + N4�
,��y4

�17�
where

N1�
,�� =
1

4
�1 − 
��1 − �� N2�
,�� =

1

4
�1 + 
��1 − ��

N3�
,�� =
1

4
�1 + 
��1 + �� N4�
,�� =

1

4
�1 − 
��1 + �� �18�

In both the thermal and mechanical problems, the field vari-
ables are approximated by the same functional form based on a
second-order representation in the local coordinates of the refer-
ence subcell in the 
-� plane, given by

f�
,�� = F�00� + 
F�10� + �F�01� +
1

2
�3
2 − 1�F�20� +

1

2
�3�2 − 1�F�02�

�19�

For the thermal problem, f�
 ,�� represents the local temperature
field, whereas in the mechanical problem the above expression
becomes a vector function representing the two displacement
components in the 
-� plane with two sets of coefficients associ-
ated with each term in the expansion. Further, both sets of field
variables are governed by similar differential equations and con-
stitutive equations relating flux-like quantities to the partial de-
rivatives of the field variables. Therefore, in this section we de-

velop unifying relations containing common transformation
matrices between surface-averaged quantities in the two planes in
order to avoid duplication in the subsequent sections dealing with
the thermal and mechanical problems.

First, we evaluate surface-averaged functions on each face of
the jth subcell in the actual microstructure by performing integra-
tions along the corresponding sides 
= ±1 and �= ±1 in the 
-�
plane given the mapping in Eqs. �17� and �18�. Denoting the
surface-averaged functions associated with each face Fi refer-

enced to the global coordinates by f̄ i, we obtain

f̄1,3 =
1

2�
−1

+1

f�
,� =  1�d
 = F�00�  F�01� + F�02�

f̄2,4 =
1

2�
−1

+1

f�
 = ± 1,��d� = F�00� ± F�10� + F�20� �20�

where superscripts denoting the jth subcell have been suppressed
for clarity of notation. Solving for the first and second order co-
efficients F�10� , . . . ,F�02� in terms of the surface-averaged func-
tions and the zeroth order coefficient F�00� we have

	
F�10�

F�01�

F�20�

F�02�


 =
1

2	
0 1 0 − 1

− 1 0 1 0

0 1 0 1

1 0 1 0

	

f̄1 − F�00�

f̄2 − F�00�

f̄3 − F�00�

f̄4 − F�00�


 �21�

Derivation of the relations between surface-averaged flux-like

variables and f̄1 , . . . , f̄4 requires the relationship between first par-
tial derivatives of the function f�· , · � in the two planes 
-� and
x-y. These two sets of partial derivatives are related through the
Jacobian J and its inverse J−1

	
�f

�


�f

��

 = J	

�f

�x

�f

�y

 and 	

�f

�x

�f

�y

 = J−1	

�f

�


�f

��

 �22�

where J is obtained from the transformation equations, Eqs. �17�
and �18�, in the form

J = 	
�x

�


�y

�


�x

��

�y

��

 = �A1 + A2� A4 + A5�

A3 + A2
 A6 + A5

� �23�

with A1 , . . . ,A6 given below in terms of the vertex coordinates
�xi ,yi�,

A1 =
1

4
�− x1 + x2 + x3 − x4� A2 =

1

4
�x1 − x2 + x3 − x4�

A3 =
1

4
�− x1 − x2 + x3 + x4� A4 =

1

4
�− y1 + y2 + y3 − y4�

A5 =
1

4
�y1 − y2 + y3 − y4� A6 =

1

4
�− y1 − y2 + y3 + y4�

In the spirit of the present finite-volume direct averaging tech-
nique, we relate the partial derivatives of the function f�· , · � with
respect to the coordinates �x ,y� to those with respect to the coor-
dinates �
 ,�� through the inverse of the volume-averaged Jaco-

bian J̄

Fig. 3 Mapping of the reference subcell in the �-� plane onto a
quadrilateral subcell in the x-y plane of the actual
microstructure.
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J̄ =
1

4�
−1

+1�
−1

+1

Jd
d� �24�

so that its inverse J̄−1, which replaces J−1 in Eq. �22�, is

J̄−1 = Ĵ =
1

A7
� A6 − A4

− A3 A1
� �25�

where A7=A1A6−A3A4. The discussion of this simplification is
deferred to Sec. 6.

The surface-averaged partial derivatives of the function f�· , · �
with respect to the �x ,y� coordinates are then linearly related to
the corresponding surface-averaged partial derivatives with re-

spect to the �
 ,�� coordinates through Ĵ. Evaluating partial de-
rivatives of f�
 ,�� along the four faces of the reference subcell,
and taking the surface average of the resulting expressions on
each face, the surface-averaged derivatives with respect to the
�x ,y� coordinates are obtained in terms of the first and second
order coefficients F�10� , . . . ,F�02�,

	 �f

�x

�f

�y




=±1

= Ĵ	 �f

�


�f

��




=±1

= ĴA1,2	
F�10�

F�01�

F�20�

F�02�


 �26�

	 �f

�x

�f

�y



�=±1

= Ĵ	 �f

�


�f

��



�=±1

= ĴA3,4	
F�10�

F�01�

F�20�

F�02�


 �27�

where

A1,2 = �1 0 ±3 0

0 1 0 0
� A3,4 = �1 0 0 0

0 1 0 ±3
� �28�

The first and second order coefficients in Eqs. �26� and �27� are
directly related to the surface-averaged values of the function and
the remaining unknown zeroth order coefficient F�00�, see Eq.
�21�. This coefficient is obtained from the volume-averaged gov-
erning differential equation in terms of the surface-averaged func-
tions. Satisfaction of the field equations within subcells of the
actual microstructure requires the relationship between the second
partial derivatives of the function f�· , · � in the two planes. This

relationship is obtained in terms of the products of the Ĵ elements
as follows:

	
�2F

�x2

�2F

�x�y

�2F

�y2


 = 	�Ĵ11�2 2Ĵ11Ĵ12 �Ĵ12�2

Ĵ11Ĵ21 Ĵ11Ĵ22 + Ĵ12Ĵ21 Ĵ12Ĵ22

�Ĵ21�2 2Ĵ21Ĵ22 �Ĵ22�2

	

�2F

�
2

�2F

�
��

�2F

��2


 �29�

The relationships derived in this section are employed in the fol-
lowing sections to develop local conductivity and stiffness matri-
ces for the jth subcell in the actual microstructure. The actual
details differ due to the differences in the number of field vari-
ables, constititutive equations, and governing differential equa-
tions.

4 Thermal Analysis
The local conductivity matrix relates the surface-averaged tem-

peratures on each rectilinear face of the jth subcell in the actual

microstructure to the corresponding surface-averaged heat fluxes.
The construction of this matrix involves direct satisfaction of the
heat conduction equation within each jth subcell

�qx

�x
+

�qy

�y
= − �C

�T

�t
�30�

in a volume-average sense given the pointwise relationship be-
tween the heat flux and temperature gradient components through
the Fourier heat conduction law. Assuming that each subcell con-
tains isotropic material, the heat flux components are related to the
partial derivatives of the temperature field in the x-y plane as
follows:

�qx

qy
� = �− k 0

0 − k
�	

�T

�x

�T

�y

 = k̄	

�T

�x

�T

�y

 �31�

where k is the thermal conductivity coefficient. In the absence of
spatial dependence of this coefficient, Eq. �30� is expressed di-
rectly in terms of the temperature field partial derivatives using
the above Fourier law

k
�2T

�x2 + k
�2T

�y2 = �C
�T

�t
�32�

We begin the local conductivity matrix construction by approxi-
mating the temperature field in the reference subcell, following
Eq. �19�, by

T�
,�� = T�00� + 
T�10� + �T�01� +
1

2
�3
2 − 1�T�20� +

1

2
�3�2 − 1�T�02�

�33�

The surface-averaged temperatures T̄i on each face Fi of the jth
subcell in the actual microstructure are then obtained in terms of
the zeroth, first, and second order coefficients T�00� ,T�10� , . . . ,T�02�
in the form given by Eq. �20�. Solving for the first and second
order coefficients in terms of the surface-averaged temperatures
and the zeroth order coefficient we have, according to Eq. �21�,

	
T�10�

T�01�

T�20�

T�02�


 =
1

2	
0 1 0 − 1

− 1 0 1 0

0 1 0 1

1 0 1 0

	

T̄1 − T�00�

T̄2 − T�00�

T̄3 − T�00�

T̄4 − T�00�


 �34�

To construct the local conductivity matrix, we first determine
the surface-averaged heat flux components on each face of the jth
subcell in the x-y plane using Eq. �31�. Taking the surface aver-
ages of this equation on each face of the reference subcell in the

-� plane, and expressing the surface-averaged partial derivatives
of the temperature field with respect to the �x ,y� coordinates in
terms of the corresponding surface-averaged partial derivatives
with respect to the �
 ,�� coordinates, and thus the first and second
order coefficients T�10� , . . . ,T�02� using Eqs. �26� and �27�, we ob-
tain

�q̄x

q̄y
�


=±1

= k̄	 �T

�x

�T

�y




=±1

= k̄Ĵ	 �T

�


�T

��




=±1

= k̄ĴA1,2T �35�
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�q̄x

q̄y
�

�=±1

= k̄	 �T

�x

�T

�y



�=±1

= k̄Ĵ	 �T

�


�T

��



�=±1

= k̄ĴA3,4T �36�

where T= �T�10� ,T�01� ,T�20� ,T�02��T. These surface-averaged heat
fluxes are then projected onto the unit normals to each subcell
face in the actual microstructure

q̄1,3 = �nx
�1,3� ny

�1,3���q̄x

q̄y
�

�=1

and q̄2,4 = �nx
�2,4� ny

�2,4���q̄x

q̄y
�


=±1

�37�

This leads to the normal surface-averaged heat fluxes expressed
directly in terms of the first and second order temperature coeffi-
cients T�10� , . . . ,T�02�

	
q̄1

q̄2

q̄3

q̄4


 = Ā	
T�10�

T�01�

T�20�

T�02�


 �38�

where the matrix Ā is expressed as a product of four matrices

containing the submatrices k̄, Ĵ, A1 , . . . ,A4 and n�1� , . . . ,n�4� ob-
tained from Eqs. �35�–�37�, see Appendix A.

The temperature coefficients T�10� , . . . ,T�02� are related to the
surface-averaged temperatures on each face of the jth subcell and
the zeroth order coefficient T�00� through Eq. �34�. In order to
complete the construction of the local conductivity matrix for the
jth subcell, the volume-averaged heat conduction equation is em-
ployed to relate the zeroth order coefficient T�00� to the surface-
averaged temperatures. Using Eq. �29� to relate the second partial
derivatives of the temperature field in the x-y plane to those in the

-� plane in the heat conduction equation given by Eq. �32�, and
explicitly evaluating these partial derivatives

�2T

�
2 = 3T�20�
�2T

�
��
= 0

�2T

��2 = 3T�02� �39�

the volume-averaged heat conduction equation becomes

3�k�Ĵ11�2 + k�Ĵ21�2�T�20� + 3�k�Ĵ12�2 + k�Ĵ22�2�T�02� = �C
�T

�t

�40�

which is then expressed in terms of the four surface-averaged
temperatures and the zeroth order coefficient T�00� through the use
of Eq. �34�. The solution for T�00� depends on whether a steady-
state or transient thermal conduction problem is considered. For
both cases, the solution for T�00� can be symbolically represented
by the expression

T�00� = ��T̄2 + T̄4� + ��T̄1 + T̄3� + � �41�

where the parameters �, �, and � take different forms in each
case. Using this representation for T�00� in Eq. �34�, the first and
second order temperature coefficients are directly related to the
surface-averaged temperatures and a vector containing � as fol-
lows:

	
T�10�

T�01�

T�20�

T�02�


 = 	
0 1/2 0 − 1/2

− 1/2 0 1/2 0

− � 1/2 − � − � 1/2 − �

1/2 − � − � 1/2 − � − �

	

T̄1

T̄2

T̄3

T̄4


 − 	
0

0

�

�



= B̄	
T̄1

T̄2

T̄3

T̄4


 − 	
0

0

�

�

 �42�

When transient effects are present or cannot be ignored, the
temperature change with respect to time on the right-hand side of
Eq. �40� is approximated by

�T

�t


�T

�t


�T

�t
=

T�00�
k − T�00�

k−1

�t

Therefore, the volume-averaged heat-conduction is discretized as
follows:

�k�Ĵ11�2 + k�Ĵ21�2�T�20�
k + �k�Ĵ12�2 + k�Ĵ22�2�T�02�

k

=
�C

3
�T�00�

k − T�00�
k−1

�t
� �43�

where T�00�
k−1 is known from the �k−1�th time step and temperature

dependence of thermal �and mechanical� properties, which is of-
ten important and can be easily incorporated, is not considered
herein. In this case, using Eq. �34� to express the second order
coefficients in terms of the surface-averaged temperatures, and
then solving for T�00� we obtain the following expressions for �,
�, and � in Eq. �41�:

� =
�C

�t
+ 3k��Ĵ11�2 + �Ĵ12�2� + 3k��Ĵ21�2 + �Ĵ22�2�

� =
3

2�
�k�Ĵ11�2 + k�Ĵ21�2�

� =
3

2�
�k�Ĵ12�2 + k�Ĵ22�2�

� =
1

�

�C

�t
T�00�

k−1 �44�

In the absence of time dependence of the temperature field,
such as may occur when the transients have died out, or when the
thermal conductivity is very large with respect to the heat capac-
ity, or the thermal boundary conditions are applied very slowly,
the right-hand side of Eq. �40� is zero and the above expressions
for � and � in the absence of time effects simplify to

� = 3k��Ĵ11�2 + �Ĵ12�2� + 3k��Ĵ21�2 + �Ĵ22�2�

� = 0 �45�

with � and � retaining the forms given in Eqs. �44�.

4.1 Local Conductivity Matrix. The local conductivity ma-
trices for the transient and steady-state heat conduction problems
are then constructed by replacing the first and second order tem-
perature coefficients on the right-hand side of Eq. �38� by the
surface-averaged temperatures and the vector containing � using
Eq. �42�. For both types of heat conduction problems, the local
conductivity matrix for the jth subcell can be represented using
the same symbolic notation
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q̄1

q̄2

q̄3

q̄4



�j�

= ��j�	
T̄1

T̄2

T̄3

T̄4



�j�

− q0
�j� �46�

where for the transient case the local conductivity matrix ��j� and
the initial heat flux vector q0

�j� are given by

��j� = ĀB̄tr q0
�j� = Ā�0 0 � ��T �47�

with � and � appearing in the matrix B̄tr given by Eqs. �44�. For
the steady-state case,

��j� = ĀB̄ss q0
�j� = 0 �48�

with � and � appearing in the matrix B̄ss specialized according to
Eqs. �45�.

4.2 Global Conductivity Matrix. The local conductivity ma-
trices are assembled into a global system of equations by applying
the surface-averaged interfacial temperature continuity and heat
flux balance conditions, followed by the specified boundary con-
ditions. In this approach, redundant temperature continuity equa-
tions are eliminated by setting surface-averaged temperatures at
interfaces associated with adjacent subcells to common unknowns
in conjunction with the application of the heat flux balance con-
ditions at the common interfaces. The assembly is similar to that
used in the finite-element algorithms, in contrast with the assem-
bly used in the reconstructed finite-volume theory based on the
rectangular discretization which produces distinct rows and col-
umns of subcells absent in the parametric formulation. In particu-
lar, in the parametric formulation the position of the jth subcell
within the entire structure is defined by the global subcell vertices
xi ,yi and by the global reference indices 1, 2, 3, 4 assigned to the
subcell faces Fi. The connectivity matrix for the subcell faces Fi
defines the position of the individual local conductivity matrix
elements in the global conductivity matrix. The assembly proce-
dure allows to utilize existing algorithms developed for the finite-
element method.

The resulting global thermal conductivity matrix relates the un-
known interfacial and boundary surface-averaged temperatures to
the surface-averaged heat fluxes prescribed at the external bound-
aries of the heterogeneous material/structure

�T̄ − Q̄0 = Q̄ �49�

where T̄ contains all the unknown common interfacial and bound-

ary surface-averaged temperatures, Q̄0 contains the initial heat

flux distribution within the investigated component, and Q̄ con-
tains information on the surface-averaged heat fluxes along the
internal interfaces and the discretized boundary. It consists mainly
of zeros which are obtained after applying the interfacial heat flux
balance conditions across each interface separating adjacent sub-
cells, with the nonzero terms representing the surface-averaged
heat fluxes along each portion of the discretized boundary. The
above system of equations is modified accordingly when the
boundary conditions are specified in terms of applied temperatures
�either directly or through convective relations�, Cavalcante �15�.

5 Mechanical Analysis
The local stiffness matrix relates the surface-averaged displace-

ments on each rectilinear face of a jth subcell in the actual micro-
structure to the corresponding surface-averaged tractions. The
construction of this matrix parallels that of the local conductivity
matrix with modifications that account for vectorial rather than
scalar field variables and the attendant governing differential and
constitutive equations. For plane problems in the x-y plane and in

the absence of body forces, the stress equilibrium equations that
are directly satisfied in the volume-average sense during the local
stiffness matrix construction are

��xx

�x
+

��xy

�y
= 0

��xy

�x
+

��yy

�y
= 0 �50�

For an isotropic elastic material occupying the jth subcell, stress
components are related to strain components through the familiar
Hooke’s law

	�xx

�yy

�xy

 = 	C̄xx C̄xy 0

C̄xy C̄xx 0

0 0
1

2
�C̄xx − C̄xy� 
	 �xx

�yy

2�xy

 − 	�

�

0

�T = C̄	 �xx

�yy

2�xy



− ��T �51�

where the stiffness matrix elements and thermal contributions for
the plane strain and plane stress cases are given in terms of the
thermoelastic constants in different forms, cf. Sokolnikoff �16�.
For the plane strain case �̄33=0 and for the plane stress case �̄33 is
determined from the condition �̄33=0. Using the strain-
displacement relations, in conjunction with the constitutive equa-
tions, in the stress equilibrium equations we obtain the Navier’s
equations for plane problems

C̄xx
�2u

�x2 +
1

2
�C̄xx − C̄xy�

�2u

�y2 +
1

2
�C̄xx + C̄xy�

�2v
�x�y

=
�

�x
���T�

1

2
�C̄xx + C̄xy�

�2u

�x�y
+

1

2
�C̄xx − C̄xy�

�2v
�x2 + C̄xx

�2v
�y2 =

�

�y
���T�

�52�
We begin the local stiffness matrix construction by approximat-

ing the displacement field in the reference subcell, following Eq.
�19�, by

u�
,�� = U1�00� + 
U1�10� + �U1�01� +
1

2
�3
2 − 1�U1�20�

+
1

2
�3�2 − 1�U1�02�

v�
,�� = U2�00� + 
U2�10� + �U2�01� +
1

2
�3
2 − 1�U2�20�

+
1

2
�3�2 − 1�U2�02� �53�

The surface-averaged displacement components ūi and v̄i on each
face Fi of the jth subcell in the actual microstructure are then
obtained in terms of the zeroth, first, and second-order coefficients
of the displacement field in the form given by Eq. �20� for each
set. Solving for the first and second order coefficients in terms of
the surface-averaged displacement components and the zeroth or-
der coefficient we have, according to Eq. �21�,

	
U1�10�

U1�01�

U1�20�

U1�02�


 =
1

2	
0 1 0 − 1

− 1 0 1 0

0 1 0 1

1 0 1 0

	

ū1 − U1�00�

ū2 − U1�00�

ū3 − U1�00�

ū4 − U1�00�


 �54�
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and similarly

	
U2�10�

U2�01�

U2�20�

U2�02�


 =
1

2	
0 1 0 − 1

− 1 0 1 0

0 1 0 1

1 0 1 0

	

v̄1 − U2�00�

v̄2 − U2�00�

v̄3 − U2�00�

v̄4 − U2�00�


 �55�

To construct the local stiffness matrix, we first determine the
surface-averaged in-plane stress components on each face of the
jth subcell in the x-y plane using Eq. �51�. Taking the surface
averages of this equation on each face of the reference subcell in

the 
-� plane, introducing the matrix Ē which relates in-plane
strains to all four derivatives of the displacement components

	 �xx

�yy

2�xy

 = 	1 0 0 0

0 0 0 1

0 1 1 0

	

�u

�x

�u

�y

�v
�x

�v
�y


 = Ē	
�u

�x

�u

�y

�v
�x

�v
�y


 �56�

and expressing the surface-averaged partial derivatives of the dis-
placement field with respect to the �x ,y� coordinates in terms of
the corresponding surface-averaged partial derivatives with re-
spect to the �
 ,�� coordinates, we have

	�̄xx

�̄yy

�̄xy




=±1

= C̄Ē	
�u

�x

�u

�y

�v
�x

�v
�y




=±1

− �	�T̄

�T̄

0




=±1

= C̄Ē�Ĵ 0

0 Ĵ
�	

�u

�


�u

��

�v
�


�v
��




=±1

− �	�T̄

�T̄

0




=±1

�57�

	�̄xx

�̄yy

�̄xy



�=±1

= C̄Ē	
�u

�x

�u

�y

�v
�x

�v
�y



�=±1

− �	�T̄

�T̄

0



�=±1

= C̄Ē�Ĵ 0

0 Ĵ
�	

�u

�


�u

��

�v
�


�v
��



�=±1

− �	�T̄

�T̄

0



�=±1

�58�

The surface-averaged displacement derivatives with respect to the
�
 ,�� coordinates are then expressed in terms of the first and
second order coefficients U1�10� , . . . ,U1�02� and U2�10� , . . . ,U2�02�
using Eqs. �26� and �27�,

	�̄xx

�̄yy

�̄xy




=±1

= C̄Ē�Ĵ 0

0 Ĵ
��A1,2 0

0 A1,2
��U1

U2
� − �	�T̄

�T̄

0




=±1

�59�

	�̄xx

�̄yy

�̄xy



�=±1

= C̄Ē�Ĵ 0

0 Ĵ
��A3,4 0

0 A3,4
��U1

U2
� − �	�T̄

�T̄

0



�=±1

�60�

where

U1 = �U1�10�,U1�01�,U1�20�,U1�02��T and

U2 = �U2�10�,U2�01�,U2�20�,U2�02��T

.
The surface-averaged tractions tn�i�

on each face Fi of a jth
subcell with the unit normal n�i� are then obtained in terms of the
corresponding stresses using Cauchy’s stress relations tn�i�

=� ·n�i� which can be written in a unified manner in terms of the
individual components as follows:

� t̄x

t̄y
��1,3�

= �nx 0 ny

0 ny nx
��1,3�	�̄xx

�̄yy

�̄xy



�=1

and

� t̄x

t̄y
��2,4�

= �nx 0 ny

0 ny nx
��2,4�	�̄xx

�̄yy

�̄xy




=±1

�61�

where the surface-averaged stress components on the faces F1,3
and F2,4 are evaluated at �= 1 and 
= ±1, respectively. This
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leads to the surface-averaged traction components acting on each
face expressed directly in terms of the first and second order dis-
placement coefficients U1�10� , . . . ,U1�02� and U2�10� , . . . ,U2�02�

	
t̄x
�1�

t̄y
�1�

t̄x
�2�

t̄y
�2�

t̄x
�3�

t̄y
�3�

t̄x
�4�

t̄y
�4�


 = Ā	
U1�10�

U1�01�

U1�20�

U1�02�

U2�10�

U2�01�

U2�20�

U2�02�


 − �D�T �62�

where �T=��T̄1 T̄1 0 T̄2 T̄2 0 T̄3 T̄3 0 T̄4 T̄4 0�T, D contains the
unit normal components associated with the four rectilinear faces,

Eq. �61�, and the matrix Ā is a product of D and four other

matrices containing the submatrices C̄, Ē, Ĵ and A1 , . . . ,A4 ob-
tained from Eqs. �59� and �60� which are given explicitly in Ap-
pendix B.

The first and second order displacement coefficients are related
to the surface-averaged displacements on each face of the jth
subcell and the zeroth order displacements through Eqs. �54� and
�55�. In order to complete the construction of the local stiffness
matrix for the jth subcell, the volume-averaged stress equilibrium
equations are employed to relate the zeroth order coefficients to
the surface-averaged displacements. Using Eq. �29� to relate the
second partial derivatives of the displacement field in the x-y
plane to those in the 
-� plane in the stress equilibrium equations
given by Eqs. �52�, and explicitly evaluating these partial deriva-
tives

�2u

�
2 = 3U1�20�
�2u

�
��
= 0

�2u

��2 = 3U1�02�

�2v
�
2 = 3U2�20�

�2v
�
��

= 0
�2v
��2 = 3U2�02� �63�

the volume-averaged equilibrium equations become

�C̄xx�Ĵ11�2 +
1

2
�C̄xx − C̄xy��Ĵ21�2�U1�20� + �C̄xx�Ĵ12�2 +

1

2
�C̄xx − C̄xy�

��Ĵ22�2�U1�02� +
1

2
�C̄xx + C̄xy�Ĵ11Ĵ21U2�20�

+
1

2
�C̄xx + C̄xy�Ĵ12Ĵ22U2�02� =

�

3
�Ĵ11T�10� + Ĵ12T�01��

�C̄xx�Ĵ21�2 +
1

2
�C̄xx − C̄xy��Ĵ11�2�U2�20� + �C̄xx�Ĵ22�2 +

1

2
�C̄xx − C̄xy�

��Ĵ12�2�U2�02� +
1

2
�C̄xx + C̄xy�Ĵ11Ĵ21U1�20�

+
1

2
�C̄xx + C̄xy�Ĵ12Ĵ22U1�02� =

�

3
�Ĵ21T�10� + Ĵ22T�01�� �64�

where the volume averages of the temperature gradient compo-
nents have been approximated as follows:

�T

�x
=

1

4�
−1

+1�
−1

+1
�T

�x
d
d� = Ĵ11T�10� + Ĵ12T�01�

�T

�y
=

1

4�
−1

+1�
−1

+1
�T

�y
d
d� = Ĵ21T�10� + Ĵ22T�01� �65�

The above volume-averaged equilibrium equations are then ex-
pressed in terms of the eight surface-averaged displacement com-
ponents and the zeroth order coefficients U1�00� and U2�00� through
the use of Eqs. �54� and �55�. The solution for these two zeroth
order coefficients produces

�U1�00�

U2�00�
� = 	−1
	

ū2 + ū4

ū1 + ū3

v̄2 + v̄4

v̄1 + v̄3


 + 	−1� �66�

where the elements of the matrices 	, 
, and � are given in
Appendix B. Using this representation for U1�00� and U2�00� in
Eqs. �54� and �55�, the first and second order displacement coef-
ficients are directly related to the surface-averaged displacement
components and a vector containing first order temperature coef-
ficients as follows:

	
U1�10�

U1�01�

U1�20�

U1�02�

U2�10�

U2�01�

U2�20�

U2�02�


 = B̄	
ū1

v̄1

ū2

v̄2

ū3

v̄3

ū4

v̄4


 − N	−1� �67�

where B̄=P−N	−1
M and the matrices M, N, and P are given
in Appendix B in explicit forms.

5.1 Local Stiffness Matrix. The local stiffness matrix for the
transient and steady-state thermomechanical problems is then con-
structed by replacing the first and second order displacement co-
efficients on the right-hand side of Eq. �62� by the surface-
averaged displacements and the vector containing thermal
contributions using Eq. �67�. For both types of thermomechanical
problems, the local stiffness matrix for the jth subcell can be
represented using the same symbolic notation

	
t̄1

t̄2

t̄3

t̄4



�j�

= K�j�	
ū1

ū2

ū3

ū4



�j�

− t0
�j� �68�

where t̄i= �t̄x
�i� t̄y

�i��T and ūi= �ūi v̄i�T, and the local stiffness matrix
K�j� and the initial traction vector t0

�j� are given by

K�j� = ĀB̄ t0
�j� = �D�T + ĀN	−1� �69�

5.2 Global Stiffness Matrix. The local stiffness matrices are
assembled into a global system of equations by applying surface-
averaged interfacial traction and displacement continuity condi-
tions, followed by the specified boundary conditions in the same
manner as the local conductivity matrices. In this approach, re-
dundant displacement continuity equations are eliminated by set-
ting surface-averaged displacement components at the interfaces
associated with adjacent subcells to common unknowns, upon ap-
plication of traction continuity conditions at these interfaces. The
resulting global stiffness matrix relates the unknown interfacial
and boundary surface-averaged displacements to the surface-
averaged tractions prescribed at the external boundaries of the
heterogeneous material/structure
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KŪ − t̄0 = t̄ �70�

where Ū contains all the unknown interfacial and boundary
surface-averaged displacements, t̄0 contains the initial thermal
loading effects, and t̄ contains information on the surface-
averaged tractions along the internal interfaces and the discretized
boundary. It consists mainly of zeros which are obtained after
applying interfacial traction continuity conditions across each in-
terface separating adjacent subcells, with the nonzero terms rep-
resenting surface-averaged tractions along each portion of the dis-
cretized boundary. The above system of equations is then
modified according to the specified boundary conditions, Caval-
cante �15�.

6 Discussion
The parametric formulation of the finite-volume theory for

functionally graded materials based on the local/global conductiv-
ity and stiffness matrix approach is a significant step in the con-
tinuing development of this theory for the modeling of materials
with heterogeneous microstructures. In particular, modeling of mi-
crostructural details has been made substantially more efficient
and accurate through the ability to more precisely capture continu-
ous inclusions with arbitrarily-shaped cross sections, as has mod-
eling of arbitrarily-shaped external boundaries of structural com-
ponents. In this sense, the theory has been brought closer to the
finite-element approach without the concomitant convergence
problems at the interfaces separating heterogeneities with large
material property mismatch, but with the added advantage of prof-
iting from existing preprocessing and postprocessing algorithms
developed for the finite-element method. Explicit representation
of the temperature and displacement fields within the subcells
used to discretize the material’s microstructure, application of
both the displacement and traction continuity conditions across
interfaces separating adjacent heterogeneities, and satisfaction of
field equations in the large within each subcell, make this ap-
proach distinct from the finite-element method and the finite-
volume technique used in computational fluid dynamics. These
features also produce better solution convergence relative to the
finite-element method when continuous inclusions with large elas-
tic moduli contrast in a heterogeneous microstructure are modeled
by single subcells/elements with rectangular cross sections, as
demonstrated by Bansal and Pindera �9�. The parametric formula-
tion facilitates comparison with the finite-element method in a
more direct way when curved boundaries or continuous inclusions
are involved, as will be demonstrated in Part II.

The parametric formulation now makes the method competitive
with the finite-element approach vis-à-vis its ability to model ar-
bitrary two-dimensional geometries with the added advantage of
accommodating continuously reinforced heterogeneous micro-
structures in a more efficient manner. The full advantage of the
two-dimensional version will be realized upon incorporating spa-
tially variable material properties at the subcell level, as was done
by Kim and Paulino �17� in the context of the finite-element
method and by Zhong et al. �10� in the context of the standard
version of the finite-volume theory. This will enable unified mul-
tiscale analysis of graded microstructures with two levels of mi-
crostructural scales not easily amenable to analysis by the finite-
element method. Incorporation of three-dimensional mapping
capability into the parametric version will enable modeling of
heterogeneous microstructures containing arbitrarily-shaped par-
ticulate inclusions. This is an active area of research spanning a
wide range of applications ranging from particulate metal matrix
composites to mechanism-based simulation of polycrystalline ma-
terials. Modeling of actual three-dimensional microstructures with
sufficient fidelity using the standard finite-volume theory is pro-
hibitively expensive and beyond the present computing capabili-
ties.

The present development of the theory was simplified by using
the volume-averaged Jacobian of the coordinate transformation to

relate flux-like quantities in the reference and actual coordinate
systems. This, in turn, simplified the calculation of the corre-
sponding surface-averaged quantities on the four faces of a sub-
cell in the actual microstructure, as well as the satisfaction of heat
conductivity and equilibrium equations, and ultimately the local
conductivity and stiffness matrix constructions. These approxima-
tions may potentially affect the accuracy of the predicted results,
and therefore their effect will be investigated in our future work. It
is a straightforward, albeit tedious, procedure to account for the
dependence of the coordinate transformation Jacobian on local
coordinates when calculating surface-averaged heat fluxes and
tractions at the expense of some loss in conciseness and ease of
programming. Part II of this manuscript demonstrates that the
above simplification produces acceptably accurate predictions of
stress fields in curved homogeneous and graded structural compo-
nents and heterogeneous materials with sufficient mesh refinement
in comparison with the finite-element results.

7 Conclusions
A parametric formulation of the standard finite-volume theory

for functionally graded materials has been developed based on the
local/global conductivity and stiffness matrix approaches. Using
parametric mapping of a reference subcell onto the corresponding
subcell in the actual microstructure, easily programmable local
conductivity and stiffness matrices have been obtained for quad-
rilateral subcells that can be used to more efficiently model mi-
crostructural details with curved boundaries previously approxi-
mated using rectangular subcells. The parametric version can also
be used to model homogeneous or heterogeneous structural com-
ponents with curved boundaries. Existing assembly algorithms de-
veloped for the finite-element method can be utilized for efficient
construction and solution of the global systems of equations that
govern thermomechanical problems of heterogeneous media. Veri-
fication of the implemented parametric formulation for homoge-
neous and heterogeneous components with curved and rectangular
boundaries is presented in Part II, together with demonstration of
this version’s advantage over the standard theory based on rectan-
gular subcell discretization.
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Appendix A

The matrix Ā in Eq. �38� is a product of the four matrices A, B,

C, and D arranged in reverse order, namely Ā=DCBA, which are
given below

A = 	
A4

A1

A3

A2


 B = 	
Ĵ 0 0 0

0 Ĵ 0 0

0 0 Ĵ 0

0 0 0 Ĵ

 C = 	

k̄ 0 0 0

0 k̄ 0 0

0 0 k̄ 0

0 0 0 k̄



D = 	
n�1� 0 0 0

0 n�2� 0 0

0 0 n�3� 0

0 0 0 n�4�



Appendix B

The matrix Ā in Eq. �62� is a product of the five matrices A, B,

C, D, and E arranged as follows Ā=DCEBA, which are given
below
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A = 	
A4 0

0 A4

A1 0

0 A1

A3 0

0 A3

A2 0

0 A2


 B = 	
Ĵ 0 0 0 0 0 0 0

0 Ĵ 0 0 0 0 0 0

0 0 Ĵ 0 0 0 0 0

0 0 0 Ĵ 0 0 0 0

0 0 0 0 Ĵ 0 0 0

0 0 0 0 0 Ĵ 0 0

0 0 0 0 0 0 Ĵ 0

0 0 0 0 0 0 0 Ĵ



C = 	

C̄ 0 0 0

0 C̄ 0 0

0 0 C̄ 0

0 0 0 C̄

 D = 	

n̂�1� 0 0 0

0 n̂�2� 0 0

0 0 n̂�3� 0

0 0 0 n̂�4�



E = 	
Ē 0 0 0

0 Ē 0 0

0 0 Ē 0

0 0 0 Ē



where the matrices n̂�i� are defined as

n̂�i� = �nx 0 ny

0 ny nx
��i�

The elements of the matrices 	 and 
, and the vector � in Eq.
�66� are

�11 = C̄xx��Ĵ11�2 + �Ĵ12�2� +
1

2
�C̄xx − C̄xy���Ĵ21�2 + �Ĵ22�2�

�12 =
1

2
�C̄xx + C̄xy��Ĵ11Ĵ21 + Ĵ12Ĵ22�

�21 = �12

�22 = C̄xx��Ĵ21�2 + �Ĵ22�2� +
1

2
�C̄xx − C̄xy���Ĵ11�2 + �Ĵ12�2�

�11 =
1

2
�C̄xx�Ĵ11�2 +

1

2
�C̄xx − C̄xy��Ĵ21�2�

�12 =
1

2
�C̄xx�Ĵ12�2 +

1

2
�C̄xx − C̄xy��Ĵ22�2�

�13 =
1

2
�C̄xx + C̄xy�Ĵ11Ĵ21

�14 =
1

2
�C̄xx + C̄xy�Ĵ12Ĵ22

�21 =
1

2
�C̄xx + C̄xy�Ĵ11Ĵ21

�22 =
1

2
�C̄xx + C̄xy�Ĵ12Ĵ22

�23 =
1

2
�C̄xx�Ĵ21�2 +

1

2
�C̄xx − C̄xy��Ĵ11�2�

�24 =
1

2
�C̄xx�Ĵ22�2 +

1

2
�C̄xx − C̄xy��Ĵ12�2�

�1 = −
1

3
��Ĵ11T�10� + Ĵ12T�01��

�2 = −
1

3
��Ĵ21T�10� + Ĵ22T�01��

In order to write down the matrices M, N, and P that appear in
Eq. �67� we define the following vectors vi:

v1 = �1,0,0,0� v2 = �0,1,0,0� v3 = �0,0,1,0� v4 = �0,0,0,1�
so that

M = 	
v3 v3

v1 v1

v4 v4

v2 v2


 N = �v3
T + v4

T 0

0 v3
T + v4

T � P =
1

2	
v3 − v3

− v1 v1

v3 v3

v1 v1

v4 − v4

− v2 v2

v4 v4

v2 v2
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Parametric Formulation of the
Finite-Volume Theory for
Functionally Graded
Materials—Part II: Numerical
Results
In Part I of this communication, the finite-volume theory for functionally graded materi-
als was further extended to enable efficient analysis of structural components with curved
boundaries, as well as efficient modeling of continuous inclusions with arbitrarily-shaped
cross sections of a graded material’s microstructure, previously approximated using dis-
cretizations by rectangular subcells. This was accomplished through a parametric for-
mulation based on mapping of a reference square subcell onto a quadrilateral subcell
resident in the actual microstructure. In Part II, the parametric formulation is verified
through comparison with analytical solutions for homogeneous and graded curved struc-
tural components subjected to transient thermal and steady-state thermomechanical
loading. Grading is modeled using piecewise uniform thermoelastic moduli assigned to
each discretized region. Results for a heterogeneous microstructure in the form of a
single inclusion embedded in the matrix phase of large dimensions are also generated
and compared with the exact analytical solution, as well as with the results obtained
using the standard version of the finite-volume theory based on rectangular discretization
and the finite-element method. It is demonstrated that the parametric finite-volume theory
is a very competitive alternative to the finite-element method based on the quality of
results and execution time. �DOI: 10.1115/1.2722313�

Keywords: functionally graded materials, finite-volume theory, parametric formulation

1 Introduction
In Part I of this paper, a parametric formulation of the recently

reconstructed finite-volume theory for functionally graded materi-
als, Bansal and Pindera �1�, Zhong et al. �2�, and Pindera et al. �3�,
was developed in order to enable efficient modeling of micro-
structures and structural components that cannot be easily mod-
eled using rectangular subvolumes �called subcells� employed in
the original Cartesian-based theory. In the parametric formulation,
the local conductivity and stiffness matrices of quadrilateral sub-
cells that are used in the discretization of the actual microstructure
were developed using a transformation that maps a reference
square subcell onto the actual quadrilateral subcell. Such mapping
capability offers the same flexibility as the finite-element method
for modeling microstructures and geometries with curved and
quadrilateral features, while retaining its quick convergence char-
acteristics in the presence of highly heterogeneous microstruc-
tures.

In its most basic form, the parametric version of the finite-
volume theory reduces to the standard version when the mapping
preserves the reference subcell’s mutually orthogonal faces. The
numerical implementation of the parametric version for this spe-
cial case was verified by Cavalcante �4� upon comparison of the
predicted results for the transient temperature distribution in a
rectangular slab graded in the through-thickness direction with the
analytical solution provided by Sutradhar et al. �5�. This class of
problems is important in its own right due to applications to ther-
mal barrier coatings which are becoming widespread in many

technological areas, cf. Paulino �6� for some recent contributions
to this area. Moreover, the transient case initially produces large
temperature gradients leading to large stress gradients which re-
quire substantial discretization of the structural component to be
captured accurately by the finite-volume theory. Identification of
the required discretization for this case provides a guide for the
discretization of structural components with curved boundaries
under transient thermal loading.

In Part II of this paper, we illustrate the parametric formula-
tion’s capability to accurately capture thermomechanical fields in
homogeneous and graded thick-walled cylinders subjected to
steady-state and transient loading, as well as local stress fields in
the vicinity of circular inclusions. Part II is organized as follows.
Section 2 deals with homogeneous and graded thick-walled cylin-
ders subjected to transient as well as steady-state thermomechani-
cal loading, and verifies the parametric finite-volume theory’s
ability to accurately model structural components with curved
boundaries. The so-called Eshelby problem, Eshelby �7�, is con-
sidered in Sec. 3 and solved using the standard and parametric
versions of the finite-volume theory, and the results are compared
with the finite-element predictions. This comparison demonstrates
that the stress concentration effects artificially introduced at the
fiber/matrix interface by rectangular subcell approximation are
eliminated by the parametric formulation with sufficiently fine
discretization. Comparison with the finite-element results demon-
strates the parametric theory’s competitive advantage from the
accuracy and processing time perspectives. Some observations on
the predictive capabilities of the standard and parametric versions
of the finite-volume theories relative to the finite-element method
are made in Sec. 4 based on the results of Sec. 3, which point to
new areas of investigation. Finally, Sec. 5 contains a summary and
conclusions stemming from this investigation.
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2 Thermomechanical Loading of Thick-Walled Cylin-
ders

We consider the response of homogeneous and graded thick-
walled cylinders subjected to steady-state and transient thermome-
chanical loading by the application of a pressure and temperature
differential at the inner and outer surfaces, Fig. 1. The specified
loading produces an axisymmetric state of deformation and stress
for which one-dimensional analytical solutions are available.
These analytical solutions are obtained by first solving the heat
conduction equation in polar coordinates

�qr

�r
+

qr

r
= − �C

�T

�t

where

qr = − k
�T

�r
�1�

to generate the temperature field. The mechanical fields are then
obtained by solving the surviving elasticity field equations using
either the displacement or stress formulation. In the former ap-
proach employed here, the radial displacement field is determined
from the solution of the surviving stress equilibrium equations

��rr

�r
+

�rr − ���

r
= 0 �2�

expressed in terms of the radial displacement using Hooke’s law,
which under plane strain condition has the form

�rr =
E

�1 + ���1 − 2��
��1 − ���rr + ����� −

E�

1 − 2�
T�r�

��� =
E

�1 + ���1 − 2��
��1 − ����� + ��rr� −

E�

1 − 2�
T�r� �3�

where T�r� is the temperature deviation from the reference tem-
perature at which all field variables are taken as zero, and the
in-plane strain components �rr and ��� are related to the radial
displacement through the strain-displacement relations,

�rr =
�u

�r
��� =

u

r
�4�

The thermoelastic moduli in Eqs. �3� vary with the radial coordi-
nate for the case when the cylinder is graded.

We test the parametric formulation’s accuracy by analyzing the
response of one-quarter of the cylinder subject to zero heat flux
and zero normal displacement boundary conditions at �=0 deg
and 90 deg applied in the surface-averaged sense at the subcells’
external faces. For the steady-state case, combined thermome-
chanical boundary conditions are applied at the inner and outer
radii, while for the transient case purely thermal loading is em-
ployed. The quarter-cylinder configuration allows us to rigorously
test the theory’s predictive capability along different radial planes
in order to verify that no circumferential dependence is detected in
the predicted field variable distributions. Different discretizations
were employed in a numerical convergence study to determine the
solution’s dependence on mesh refinement. For the analysis under
steady-state loading, presented results are based on 15�45 sub-
cell quarter-cylinder discretization with equal partitions along the
radial and circumferential directions, respectively, which was em-
ployed for both the homogeneous and radially graded configura-
tions, Fig. 2. For the transient analysis involving a homogeneous
cylinder, presented results are based on equally-partitioned 60
�45 subcell quarter-cylinder discretization �not shown�, moti-
vated by the one-dimensional transient analysis of the rectangular
plate with through-thickness graded properties discussed by Cav-
alcante �4�. This case provides a more stringent test than its ho-
mogeneous counterpart.

2.1 Graded Cylinder: Steady-State Case. The solution to a
radially graded cylinder under the type of loading considered here
was obtained by Jabbari et al. �8� when the thermoelastic moduli
vary with the radial coordinate in the manner shown below

E�r� = Eorm1 ��r� = �o ��r� = �orm2 k�r� = korm3 �5�
For such power-law dependence, the solution to the heat conduc-
tion equation �1�, in the presence of convective thermal boundary
conditions is obtained in the form

T�r� = −
A1

m3
r−m3 + A2 �6�

where the coefficients A1 and A2 are given in terms of the cylinder
geometry and the convective heat transfer coefficients and tem-
peratures at the inner and outer radii in the Appendix. Use of this
temperature field in the surviving Navier’s equation leads to the
solution for the radial displacement of the form

u�r� = B1r�1 + B2r�2 + D1rm2+1 + D2rm2−m3+1 �7�

where

Fig. 1 Thick-walled cylinder subjected to thermomechanical
loading

Fig. 2 Discretization of one quarter of a thick-walled cylinder
into 15Ã45 subcells for steady-state analysis of the radially
graded and homogeneous cylinder
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�1,2 = −
m1

2
	�m1

2

4
−

�om1

1 − �o
+ 1

and the coefficients B1 , . . . ,D2 are complicated functions of the
geometry, thermoelastic moduli and the thermal coefficients A1
and A2, and are also given in the Appendix. The stress field fol-
lows directly upon the use of Eqs. �3� and �4�.

The analytical results were generated using thermoelastic ma-
terial properties listed in Table 1 for the geometry and loading by
internal and external pressure and temperature using the coeffi-
cients for convective thermal boundary conditions reported in
Table 2. These properties are based on a related investigation of a
homogeneous cylinder conducted by Arnold et al. �9� using the
original unreconstructed higher-order theory of Aboudi et al. �10�.
The chosen power-law exponents m1, m2, and m3 produce ther-
moelastic moduli that increase parabolically with increasing radial
distance in order to dramatize the effect of grading. The results
based on the parametric finite-volume theory were generated by
assigning constant thermoelastic properties to each of the 15 cy-
lindrical shells into which the cylinder was discretized in the ra-
dial direction, which were obtained by evaluating the properties
given in Eq. �5� at the centroid of each shell. The use of 15
cylindrical shells to approximate continuous radial grading by dis-
crete grading was sufficient to generate accurate results for those
field variables that are continuous across the subcell interfaces
along radial paths as shown in the sequel.

Figure 3 presents temperature and in-plane �rr and ��� normal
stress distributions obtained from the parametric finite-volume
theory along three radial paths oriented at �=0 deg, 45 deg, and
90 deg with respect to the horizontal axis. As observed, there is no
angular dependence of the field quantities, and the predicted re-
sults for the temperature and radial stress distributions, which
must be continuous along radial paths across adjacent subcell in-
terfaces, are virtually identical with the exact analytical solution.
In contrast, discontinuities are observed in the hoop stress distri-
butions at adjacent subcell interfaces which are magnified towards
the outer radius where the hoop stress gradient becomes greater.
Since hoop stress is not a traction component in the radial direc-
tion, these discontinuities are due to the piecewise uniform man-
ner of grading and their magnitude depends on the mesh refine-
ment as observed in the numerical convergence study.
Nonetheless, the analytical solution practically coincides with the
results of the parametric finite-volume theory at the subcells’ mid-
points. As an additional check of the solution’s accuracy, the in-
plane �r� shear stress distributions, which should be identically
zero, were examined and found to be an insignificant fraction of
the normal stress magnitudes �on the order of 0.1%�.

In order to demonstrate the effect of grading, the corresponding

results for the homogeneous cylinder under the same thermo-
mechanical loading are also included in Fig. 3. These results were
obtained by setting the power-law exponents m1, m2, and m3 to
zero in the expressions for the thermoelastic moduli given in Eq.
�5�. The resulting properties are the same as those employed in the
investigation based on the original unreconstructed higher-order
theory by Arnold et al. �9� where substantial stress concentrations
caused by the use of rectangular subcells were observed at the
outer and inner radii of a similar homogeneous cylinder subjected
to similar thermomechanical loading. This issue will be discussed
in more detail in Sec. 3 in the context of the inclusion problem.

For this specialized homogeneous cylinder case, the solution of
the heat conduction equation produces the temperature distribu-
tion of the form

T�r� = A1 ln�r� + A2 �8�

where the coefficients A1 and A2, obtained upon application of the
convective thermal boundary conditions, are

A1 =
Ti − To

ln�ri/ro� − k�1/�rihi� + 1/�roho��

A2 =
Ti − To

ln�ri/ro� − k�1/�rihi� + 1/�roho��
� k

rihi
− ln�ri�� + Ti �9�

The solution of the Navier’s equation then yields radial displace-
ment of the form, cf. Timoshenko and Goodier �11�,

u�r� =
�1 + ��
�1 − ��

�
1

r�
ri

r

T�r��r�dr� + B1r +
B2

r
�10�

from which the stress components are obtained upon use of Eqs.
�3� and �4� in the form

�rr�r� = − � �E

1 − �
� 1

r2�
ri

r

T�r��r�dr�

+
E

�1 + ��� B1

1 − 2�
−

B2

r2 �
����r� = � �E

1 − �
� 1

r2�
ri

r

T�r��r�dr� −
�ET�r�
1 − �

+
E

�1 + ��� B1

1 − 2�
+

B2

r2 � �11�

Application of the specified boundary conditions yields the coef-
ficients B1 and B2 given below

Table 1 Thermal and elastic parameters of the graded cylinder used in the steady-state analysis

Conductivity
k�r�=korm3

Thermal expansion
��r�=�orm2

Modulus
E�r�=Eorm1

Poisson’s ratio
��r�=�o

ko=4.01�10−4 BTU/in. s°F �o=1.83�10−6 / °F Eo=43.5�106 psi �o=0.22
m3=2.0 m2=2.0 m1=2.0

Table 2 Graded cylinder geometry and loading used in the steady-state analysis

Radius ri Radius ro Temperature Ti Temperature To Pressure pi Pressure po

1 in. 2 in. 0°F 3500°F 10,000 psi 1000 psi

Convective coefficients

hi=0.0385 BTU/in.2 s°F
ho=0.0003 BTU/in.2 s°F
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B1 =
�1 − 2���1 + ���

1 − �

1

ro
2 − ri

2�
ri

ro

T�r��r�dr�

−
�1 − 2���1 + ��

E
� poro

2 − piri
2

ro
2 − ri

2 �
B2 =

�1 + ���
1 − �

ri
2

ro
2 − ri

2�
ri

ro

T�r��r�dr� −
�1 + ��

E
� po − pi

ro
2 − ri

2 �ri
2ro

2

�12�
As observed in Fig. 3, the temperature and both stress distribu-

tions within the homogeneous cylinder predicted by the paramet-
ric finite-volume theory are continuous along radial paths across
subcell interfaces due to the absence of material discontinuities.
As before, no angular dependence is observed and the agreement
with the analytical solution is excellent. Moreover, the stress con-
centrations at the external boundary subcell corners observed in
the results obtained by Arnold et al. �9� have been eliminated by
the present parametric mapping approach.

The effect of grading in the chosen manner decreases the tem-
perature at the outer radius at the expense of significant increases
in the magnitudes of the �rr and ��� stress components. Specifi-
cally, the maximum tensile radial stress which occurs in the inte-
rior is shifted towards the outer radius and amplified substantially
by grading, as are the maximum hoop stress magnitudes which
occur at the inner �tensile� and outer �compressive� radii.

2.2 Homogeneous Cylinder: Transient Case. The tempera-
ture distribution in a homogeneous cylinder, initially at zero tem-
perature, subjected to a sudden temperature change Ti at the inner
radius ri with the temperature To at the outer radius ro kept at zero
is given in closed form in terms of Bessel’s functions of first and
second type, Jo and Yo, Carslaw and Jaeger �12�,

T�r,t� =
ln�ro/r�
ln�ro/ri�

Ti + 
	
n=1

�
Jo�ro�n�Jo�ri�n�

Jo
2�ri�n� − Jo

2�ro�n�
�Jo�r�n�Yo�ro�n�

− Jo�ro�n�Yo�r�n��exp�−
k�n

2

C�
t� �13�

where �n’s satisfy the characteristic equation

Jo�ri�n�Yo�ro�n� − Jo�ro�n�Yo�ri�n� = 0 �14�

Since the thermal problem is uncoupled from the mechanical
problem, once the temperature field is specified the in-plane
stresses are obtained in the same form as for the steady-state prob-
lem given by Eqs. �11�, with the temperature field T�r� replaced
by T�r , t� in order to account for the transient effect, and the
coefficients B1 and B2 specialized by setting the internal and ex-
ternal pressures to zero,

B1 =
�1 − 2���1 + ���

1 − �

1

ro
2 − ri

2�
ri

ro

T�r�,t�r�dr�

B2 =
�1 + ���

1 − �

ri
2

ro
2 − ri

2�
ri

ro

T�r�,t�r�dr�

The results generated using the parametric finite-volume theory
are compared with the analytical predictions based on the above
equations in Fig. 4 when the sudden temperature change Ti at the
inner radius is one. These results were generated using the dimen-
sionless thermoelastic, geometric and loading parameters given in
Tables 3 and 4, and an initial time increment of 5�10−5 sec
which was geometrically increased by 1.05 at each time step to
accelerate solution towards the steady state. The results are shown
beginning with the time of 7�10−4 sec. As observed, the tem-
perature and circumferential stress fields are reproduced with very

Fig. 3 Comparison of the analytical solution results with the
parametric finite-volume predictions for steady-state thermo-
mechanical loading of radially graded and homogeneous cylin-
ders. Radial temperature and stress distributions in the three
cross sections �=0 deg, 45 deg, 90 deg. „a… T„r ,�=0 deg,
45 deg, 90 deg… distributions, „b… �rr„r ,�=0 deg, 45 deg,
90 deg… distributions, „c… ���„r ,�=0 deg, 45 deg, 90 deg…
distributions.
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good accuracy by the parametric finite-volume theory for all times
shown. The same was true for times less than 7�10−4 sec. Nu-
merical convergence of the radial stress field, however, is more
difficult to achieve during the initial rapid heating of the plate’s
interior with the given mesh, and particularly in the time range
5�10−5–7�10−4 sec. For times greater than 7�10−4 sec, some
deviations from the analytical solution continue to be initially ob-
served in the radial stress distribution close to the inner radius,
which however do disappear with time. The oscillatory character
of this stress distribution in the vicinity of the inner radius can be
eliminated by increasing the number of subcells in this region as
was verified �not shown�. However, it should be noted that the
radial stress is one order of magnitude lower than the hoop stress
which is reproduced with excellent accuracy by the parametric
finite-volume theory. It is also worth noting that despite the large
gradients observed in the radial stress distributions, the traction-
free boundary condition is satisfied at the outer cylinder radius at
all times. At the inner radius, this condition is satisfied for times
greater than 7�10−4.

3 The Inclusion Problem
The parametric finite-volume theory enables more accurate

modeling of different inclusion types of heterogeneous micro-
structures with fewer subcells than the standard finite-volume
theory based on rectangular subcell discretization. Superior results
are obtained due to the elimination of stress concentrations at
subcell corners that form the fiber/matrix interface, which are in-
troduced by the artificial modeling of curved boundaries using
rectangular discretization. Moreover, increasing the mesh refine-
ment produces results that approach those obtained from the
finite-element analysis, including satisfaction of traction and dis-
placement continuity at curved interfaces separating regions of
large elastic property contrast.

These features are illustrated in this section by considering the
classical problem of an elastic fiber embedded in a large matrix
subjected to uniform far-field stress �xx

o =100 MPa along the hori-
zontal direction, Fig. 5. When the matrix is infinite, exact analyti-
cal solution for this Eshelby problem is obtained in simple form,
cf. Dugdale and Ruiz �13�. In our case, the fiber radius is 1 and the
matrix region has dimensions of 20�20 which mimic the Eshelby
problem. To illustrate the above features, we use two mesh dis-
cretizations based on rectangular subcells for use in the standard
finite-volume theory analysis, and three discretizations based on
quadrilateral subcells for use in the parametric version and the
finite-element analysis. The elastic properties for the fiber and
matrix phases used in the analyses based on these discretizations
are given in Table 5.

The exact analytical solution to this problem serves as the gold
standard against which the standard and parametric finite-volume
and finite-element results are compared. It is given in compact
form in terms of two sets of complex potentials � and , with
each pair corresponding to the fiber and matrix phases. The
stresses in the x-y plane are obtained from the formulas

�xx = 2 Re���� − Re�z̄�� + �� �yy = 2 Re���� + Re�z̄�� + ��

�xy = Im�z̄�� + �� �15�
where the prime denotes the derivative with respect to the com-
plex variable z=x+ iy, and Re and Im denote the real and imagi-
nary parts of the expressions within the parentheses, respectively.
For the fiber phase, the two complex potentials are given by

� f = a1z  f = p1z �16�
and for the matrix phase they are

�m = ã−1z−1 + ã1z m = p̃−3z−3 + p̃−1z−1 + p̃1z �17�
Application of the interfacial displacement and traction continuity
conditions, and the far-field boundary conditions gives the follow-

Fig. 4 Comparison of the analytical solution results with the
parametric finite-volume predictions for transient thermome-
chanical loading of a homogeneous cylinder. Radial tempera-
ture and stress distributions in the cross section �=45 deg at
different times. „a… T„r ,�=45 deg… distributions, „b… �rr„r ,�
=45 deg… distributions, „c… ���„r ,�=45 deg… distributions.
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ing expressions for the coefficients appearing in the above equa-
tions in the case of plane strain loading ��̄zz=0�

a1 =
1

4
�xx

� ��m + 1�� f

�2� f + �� f − 1��m�

p1 = −
1

2
�xx

� 
1 +
� f − �m

�m + �m� f
� �18�

ã−1 = −
1

2
�xx

� 
 � f − �m

�m + �m� f
� ã1 =

1

4
�xx

� p̃−3 = ã−1

p̃−1 = 2a1 −
1

2
�xx

� p̃1 = −
1

2
�xx

� �19�

where the subscripts f and m denote fiber and matrix phases,
respectively, and the corresponding �’s are related to the Lame’s
constants � and � as follows:

� =
� + 3�

� + �

and �xx
� =�xx

o =100 MPa. Figure 5 includes the stress distributions
obtained from the above solution for the current problem. As ob-

Table 3 Dimensionless thermal and elastic parameters of the homogeneous cylinder used in
the transient analysis

Conductivity Heat capacity Density Thermal expansion Modulus Poisson’s ratio

1.0 1.0 1.0 0.02 1.0 0.3

Table 4 Dimensionless geometric and loading parameters
used in the transient thermal analysis of the homogeneous
cylinder

Radius ri Radius ro Temperature Ti Temperature To

1.5 2.0 1 0

Fig. 5 A circular fiber of radius 1 embedded in a large matrix of dimensions 20Ã20 subjected to uniform far-field
stress �xx

o =100 MPa and the stress fields obtained from the exact analytical solution for the corresponding
Eshelby problem. „a… A circular fiber in large matrix, „b… �xx„x ,y… distribution, „c… �xy„x ,y… distribution, „d… �yy„x ,y…
distribution.
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served, the normal stresses �xx and �yy in the fiber are constant
while the shear stress �xy vanishes. In the matrix, the stress field is
quite complex with all stress components present, but approaches
the uniform far-field stress �xx

o with increasing distance from the
fiber.

First, we compare the predictions of the standard and paramet-
ric versions of the finite-volume theory for comparable mesh dis-
cretizations relative to the exact solution. Figure 6 compares the
rectangular and quadrilateral subcell discretizations of the inner
2�2 region containing the fiber using the same number of divi-
sions along the horizontal and vertical axes passing through the
fiber center. For the same level of fiber discretization, 4�625
rectangular subcells were employed for the standard finite-volume
analysis of the entire region, in contrast with just 4�325 quadri-
lateral subcells required for the parametric analysis. However, be-
cause of symmetry, the analyses were performed on one quarter of

the entire region with appropriate symmetry conditions applied
along horizontal and vertical axes passing through the fiber center.
The predicted �xx�x ,y� and �xy�x ,y� stress distributions in the 3
�3 region containing the centered fiber are compared in Fig. 7
and Fig. 8, respectively. Note the different color bar scales used
for the �xx�x ,y� distributions in this figure, and in Fig. 5 showing
the exact elasticity solution, that highlight the stress concentra-
tions caused by the square subcells along the fiber/matrix inter-
face. Clearly, even at this level of discretization these stress con-
centrations evident in the standard finite-volume predictions are
eliminated through the use of quadrilateral subcells in the para-
metric version. The uniform normal and shear stress fields within
the fiber observed in the Eshelby solution results are well captured
by the parametric finite-volume predictions, as are the general
stress patterns in the fiber’s vicinity. It could be argued, however,
that the standard finite-volume theory captures the exterior field

Table 5 Fiber and matrix elastic properties for the Eshelby
problem

Material E �GPa� �

Glass fiber 69.0 0.2
Epoxy matrix 4.8 0.34

Fig. 6 Discretizations of the 2Ã2 region containing centered
fiber used in the standard „a… 4Ã625 discretization, and para-
metric „b… 4Ã325 discretization finite-volume analyses

Fig. 7 Local �xx„x ,y… stress distributions in the 3Ã3 region
containing the centered fiber predicted by the standard and
parametric finite-volume theories based on 4Ã „25Ã25…=4
Ã625 rectangular subcell and 4Ã325 quadrilateral subcell dis-
cretizations, respectively. „a… Standard finite-volume theory, „b…
parametric finite-volume theory.
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sufficiently removed from the fiber/matrix interface at least as
well �if not better� as the parametric version even at this level of
discretization. The subcell geometry outside of the fiber does in-
fluence the resulting stress distributions where a bias is observed
in the parametric version results which produces traction discon-
tinuities in the circumferential direction in contrast to the �nearly�
uniform interior fields. The traction discontinuities observed in the
exterior region become smaller with increasing mesh refinement
as demonstrated in the sequel.

Next, we demonstrate that the extent of stress concentrations
caused by the modeling of curved interfaces using rectangular
subcells can be reduced with increasing mesh refinement, but not
fully eliminated. Figure 9�a� illustrates a detail of the mesh in the
inner 2�2 region containing the fiber employed to demonstrate
this effect. The entire mesh in this study consisted of 4� �75
�75�=4�5625 subcells. The predicted �xx�x ,y�, �xy�x ,y�, and

�yy�x ,y� stress distributions in the 3�3 region containing the
centered fiber are presented in Figs. 9�b�–9�d�. As observed, while
the magnitude of stress concentrations has been slightly reduced,
the extent of these concentrations has been substantially mini-
mized producing nearly uniform stres fields within the fiber. We
note that the use of nonuniformly dimensioned subcells that better
mimic the circular fiber shape for the same overall subcell dis-
cretization of the entire region reduces these stress concentrations,
Bansal and Pindera �1�.

Finally, we compare stress fields predicted by the parametric
finite-volume theory with the finite-element results. Three addi-
tional meshes were constructed using 4�1200, 4�2600, and 4
�5700 quadrilateral subcells for the entire region. The same
meshes were employed in the finite-element analysis using Q4
and Q8 elements with 2 and 6 degrees of freedom per element,
respectively. This contrasts with 4 degrees of freedom per quad-
rilateral subcell. Figure 10 illustrates the quadrilateral subcell/
element discretizations of the inner 2�2 region containing the
centered fiber taken from 4�1200 and 4�2600 subcell/element
meshes used to discretize the entire 20�20 region. Herein, we
compare finite-element results generated with the 4�1200 Q8-
element mesh with parametric finite-volume results obtained from
the 4�2600 subcell mesh. The 4�1200 Q8-element mesh pro-
duced converged results as verified upon comparison with the
results produced by the two finer 4�2600 and 4�5700 element
meshes. Use of the Q4 elements in the 4�1200 element mesh
produced inferior results suffering from discontinuities in the sur-
rounding matrix. Increasing the mesh size to 4�5700 elements
with the Q4 elements produced results which were not as good as
those obtained from the 4�1200 Q8-element mesh.

This comparison is presented in Figs. 11–13 for the local stress
distributions �xx�x ,y�, �xy�x ,y�, and �yy�x ,y�, respectively, in the
3�3 region containing the centered fiber. These results were plot-
ted in MATLAB using data generated by the finite-element and
parametric finite-volume approaches at 5�5 and 3�3 equally-
spaced points in each element/subcell of the 4�1200 element and
4�2600 subcell meshes, respectively. As observed, comparable
results are obtained from both analyses. Increasing the mesh size
to 4�5700 subcells does improve the quality of finite-volume
results at the expense of a threefold increase in the execution time.
These execution times compare very favorably with the execution
time recorded for the 4�1200 Q8-element mesh which was ap-
proximately fifteen-fold and five-fold longer, respectively. Both
the finite-volume and finite-element codes were written in MAT-
LAB based on the same matrix solver, and executed on the same
2.79 GHz machine with 512 Mb of RAM for direct comparison.

Comparison of execution times for the different meshes used in
generating the standard and parametric finite-volume theory re-
sults with the corresponding finite-element execution times is ten-
tative, at present, because research codes not optimized for speed
were employed in the calculations. In both the finite-volume and
finite-element cases, only the assembly of the global matrices and
the solution of the systems of equations was included in the ex-
ecution time comparison. Most of the time was spent in assem-
bling the global matrices for the two methods �greater than 90%
for the investigated discretizations�, which nonetheless does dem-
onstrate the finite-volume theory’s competitive potential.

The implemented finite-element procedure employed complete
integration in the construction of local stiffness matrices �4 Gauss
points for the Q4 elements and 9 Gauss points for the Q8 ele-
ments, each integration procedure with its respective Gaussian
weights�. In the case of the parametric finite-volume approach, the
computation of subcell local stiffness matrix is much faster be-
cause no integration is necessary owing to the direct enforcement
of the equilibrium equations in the large, or in the volume-average
sense. Therefore, the calculation of the local stiffness matrix could
be interpreted in the finite-element sense as if there was only one
Gauss point, providing a partial explanation for the observed ex-

Fig. 8 Local �xy„x ,y… stress distributions in the 3Ã3 region
containing the centered fiber predicted by the standard and
parametric finite-volume theories based on 4Ã „25Ã25…=4
Ã625 rectangular subcell and 4Ã325 quadrilateral subcell dis-
cretizations, respectively. „a… Standard finite-volume theory, „b…
parametric finite-volume theory.
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ecution time differences in favor of the finite-volume theory.
Clearly, this requires further investigation in light of the finite-
volume theory’s computational promise.

4 Discussion
The parametric finite-volume predictions of the stress fields for

the Eshelby problem presented in Sec. 3 exhibit slight disconti-
nuities in some stress components in the matrix phase away from
the fiber/matrix interface even when a fine mesh, see Fig. 10�b�, is
employed. These discontinuities have directional dependence.
Specifically, small discontinuities are observed in the �xx stress
component along the y direction, while the �yy and �xy stress
components exhibit discontinuities along the x and � directions,
respectively. In contrast, the standard finite-volume theory pro-
duces smoother results with increasing mesh refinement except in
the close vicinity of the material discontinuity �fiber/matrix inter-
face�.

The finite-volume theory is based on the satisfaction of interfa-
cial continuity conditions in a surface-average sense, and there-
fore discontinuities may be present in those stress components
that are not traction components. In the standard finite-volume
theory, the discontinuities in the nontraction stress components
tend to become very small with increasing mesh refinement away
from the fiber/matrix interface, upon comparing Fig. 7�a� and Fig.
9�b� for the �xx stress component, and Fig. 8�a� and Fig. 9�c� for
the �xy stress component. In this version of the finite-volume

theory, subcell discretization parallels external boundaries of the
analyzed structure, and the external loading is applied in the same
coordinate system. Traction components are satisfied in a surface-
averaged sense across subcell faces perpendicular to each row and
column of subcells spanning the entire structure. Therefore in the
parametric version, the local subcell orientation must affect stress
distributions referred to coordinate systems that are not aligned
with subcell faces along whose surfaces the traction components
are satisfied in a surface-average sense. Thus one cause of the
observed small discontinuities may be the radially-oriented sub-
cell mesh with individual subcells rotated relative to the global
Cartesian coordinate system, which are not aligned with the ex-
ternal load. Another cause of these discontinuities may be the
approximation of the Jacobian of the coordinate transformation
employed in the subcell mapping by its volume average. We leave
the investigation of these separate effects for the future.

5 Summary and Conclusions
The parametric formulation of the finite-volume theory for

functionally graded materials developed in Part I of this contribu-
tion was verified through comparison with exact analytical and
finite-element solutions for transient and steady-state thermal and
mechanical response of homogeneous and graded thick-walled
cylinders, as well as an heterogeneous medium in the form of a
circular fiber embedded in a large square matrix. These compari-
sons have demonstrated that the parametric version can be used to

Fig. 9 Very fine discretization of the 2Ã2 region containing centered fiber taken from the 4
Ã „75Ã75…=4Ã5625 rectangular subcell mesh used in the standard finite-volume analysis, and the
resulting stress distributions in the 3Ã3 region. „a… 4Ã5625 discretization, „b… �xx„x ,y… distribu-
tion, „c… �xy„x ,y… distribution, „d… �yy„x ,y… distribution.
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model quite successfully homogeneous or layered structural com-
ponents with curved boundaries by mapping a reference square
subcell onto a quadrilateral subcell resident in the actual material/
structural component. Microstructural details with curved bound-
aries previously approximated using rectangular subcells are also
modeled more efficiently. In particular, the stress concentrations
produced by rectangular subcell discretization of a curved mate-
rial interface were eliminated by the use of quadrilateral subcells
which mimic well circular or curved boundaries.

Comparison of the parametric finite-volume theory’s predic-
tions with the corresponding finite-element results demonstrated
that results of comparable accuracy can be generated with sub-
stantially smaller execution times. This is due to the significantly
smaller overhead required to calculate local stiffness matrices us-
ing the finite-volume theory intrinsically rooted in the method’s
direct averaging approach of satisfying the equilibrium equations
in the large in the course of local stiffness or conductivity matrix
calculation.

While the parametric finite-volume theory is a significant step
in the evolution of this particular approach for the analysis of
materials/structural components with heterogeneous microstruc-
tures, a number of questions remain to be addressed as discussed
in Sec. 4. Nonetheless, the present development now places this
theory solidly among other approaches that have been employed

in the analysis of graded materials vis-à-vis accuracy of local
stress fields and flexibility of modeling actual heterogeneous mi-
crostructures, such as the finite-element methods with homoge-
neous and graded elements, cf. Pagano and Yuan �14�, Lipton
�15�, and Kim and Paulino �16�, and boundary-element methods,
Sutradhar et al. �5�. The results presented herein suggest that with
further development the finite-volume theory has the potential to
become a premier computational tool for efficient and accurate
analysis of both local and global responses of heterogeneous ma-
terials.
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Fig. 10 Discretizations of the 2Ã2 region containing centered
fiber used in the finite-element „a… 4Ã1200 Q8-element mesh
and parametric finite-volume „b… 4Ã2600 subcell discretization
analyses

Fig. 11 Local �xx„x ,y… stress distributions in the 3Ã3 region
containing centered fiber. Comparison of the parametric finite-
volume results based on the 4Ã2600 subcell discretization
with the finite-element results based on the 4Ã1200 Q8-
element mesh. „a… Parametric finite-volume theory, „b… finite-
element method.
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Appendix
For the graded cylinder under steady-state loading analyzed in

Sec. 2.1, the coefficients A1 and A2 appearing in the expression for
the temperature field in Eq. �6� are given by

A1 =
hiho�To − Ti�

ho�kiri
−m3−1 + hiri

−m3/m3� + hi�koro
−m3−1 − horo

−m3/m3�

A2 =
ho�kiri

−m3−1 + hiri
−m3/m3�To − ho�koro

−m3−1 − horo
−m3/m3�To

ho�kiri
−m3−1 + hiri

−m3/m3� + hi�koro
−m3−1 − horo

−m3/m3�
�A1�

Similarly, the coefficients B1, B2, D1, and D2 appearing in the
expression for the radial displacement in Eq. �7� are given by

B1 =
d4d5 − d2d6

d1d4 − d2d3

B2 =
d1d6 − d3d5

d1d4 − d2d3
�A2�

where

d1 = ��1 − �o��1 + �o�ri
�1+m1−1

d2 = ��1 − �o��2 + �o�ri
�2+m1−1

d3 = ��1 − �o��1 + �o�ro
�1+m1−1

d4 = ��1 − �o��2 + �o�ro
�2+m1−1

Fig. 12 Local �xy„x ,y… stress distributions in the 3Ã3 region
containing centered fiber. Comparison of the parametric finite-
volume results based on the 4Ã2600 subcell discretization
with the finite-element results based on the 4Ã1200 Q8-
element mesh. „a… Parametric finite-volume theory, „b… finite-
element method.

Fig. 13 Local �yy„x ,y… stress distributions in the 3Ã3 region
containing the centered fiber. Comparison of the parametric
finite-volume results based on the 4Ã2600 subcell discretiza-
tion with the finite-element results based on the 4Ã1200 Q8-
element mesh. „a… Parametric finite-volume theory, „b… finite-
element method.
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d5 = −
�1 + �o��1 − 2�o�

Eo
pi − ���1 − �o�m2 + 1�D1

− �1 + �o��oA2ri
m1+m2 − ���1 − �o��m2 − m3� + 1�D2

+ �1 + �o��oA1/m3ri
m1+m2−m3

d6 = −
�1 + �o��1 − 2�o�

Eo
po − ���1 − �o�m2 + 1�D1

− �1 + �o��oA2ro
m1+m2 − ���1 − �o��m2 − m3� + 1�D2

+ �1 + �o��oA1/m3ro
m1+m2−m3 �A3�

and

D1 = 
 �1 + �o��m1 + m2��o

�m2 + 1�m2 + �m2 + 1��m1 + 1� + �om1/�1 − �o� − 1
� A2

�1 − �o�

D2 = 
 �1 + �o��m3 − m2 − m1��o

�m2 − m3 + 1��m2 − m3� + �m2 − m3 + 1��m1 + 1� + �om1/�1 − �o� − 1
� A1

�1 − �o�m3
�A4�
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The Parametric Resonance
Instability in a Drilling Process
This study investigates dynamic instability in a high-speed drilling process. A pretwisted
beam is used to simulate the drill. The time-dependent nature of the thrust force and the
drilling depth is considered in the equation of motion of the drill. A moving Winkler-type
elastic foundation assumption is applied to the drill tip to approximate the time-varying
boundary conditions in the drilling process. Galerkin’s method is used to formulate the
characteristic equation in a discrete form. The variation of the instability regions of the
drill system is solved and analyzed by employing the multiple-scales perturbation
method. The numerical results indicate that the unstable regions suddenly enlarge and
shift toward a lower frequency when the drill first contacts the work piece. The effects of
the rotational speed, pretwisted angle, and thrust force of the drill on the variation of the
dynamic instability in high-speed drilling are also studied and are found to be highly
influential. �DOI: 10.1115/1.2722768�

Keywords: drilling process, pre-twisted beam, instability

Introduction
In manufacturing, drilling operations are performed on an ex-

tensive variety of machine tools, including drilling machines,
milling machines, machining centers, etc. A precisely drilled hole
enhances the quality of a product. The accuracy of the hole is
determined largely by the particular drilling process employed
�1,2�. In general, the majority of hole location errors, and reaming
and fracturing of the drill, occur at the moment when the drill first
enters the work piece. To improve the performance and capability
of the drilling operation, it is necessary to understand the variation
of the dynamic characteristics of the drilling system during the
course of the drilling process. Accordingly, this study investigates
the dynamic instability of a drill caused by fluctuations in the
rotational speed of the drill and the applied axial thrust force.

During a drilling process, the rotational speed rarely remains
constant; small fluctuations in the rotational speed are always ob-
served, particularly in high-speed drilling processes. At a certain
critical drilling speed, these speed fluctuations may cause the sys-
tem to enter a dynamically unstable condition. Several studies
�3–6� have investigated the instability of various pretwisted
beams. However, the equations of motion of these systems are
generally assumed to be time independent. Various researchers
have studied the natural frequency and transverse vibrations of a
drill �7–10�. Simplified pretwisted beams have been commonly
employed to model a drill �6,8,11,12�. The literature contains sev-
eral studies relating to the buckling load and natural frequencies
of a drill bit �13–15�. Various mathematical models of the com-
plex drill bit have been proposed to estimate the natural frequen-
cies and cutting behaviors of a drill. The effects of complex ge-
ometry or cutting chips on the cutting and dynamic properties of
the drill bit have been extensively studied �16–19�. Some investi-
gators �12,20,21� have addressed the stability of a drill and re-
ported that the rotational speed, pretwisted angle, and axial force
may alter its dynamic stability.

It has been widely reported that the dynamic characteristics of a
drill are dependent on the drilling depth and the axial thrust force.
In other words, the dynamic characteristics of the system, e.g., its

natural frequencies and instability regions, vary with time during
the drilling process. Therefore, the dynamic results calculated
from the fixed natural frequencies and normal modes become
meaningless since the structure and the boundary conditions vary
during the course of drilling. Recently, a number of studies
�22–26� have explored the interaction between the structure dy-
namic responses with moving masses, forces, and moving bound-
aries. The current study uses a pretwisted beam with a time-
dependent axial force and a time-varying elastic boundary to
approximate the drill system in a drilling process. The effects of
axial load and rotational speed fluctuations on the instability dis-
tributions are analyzed and discussed.

Formulating the Equations of Motion
A little difference was found between the complex and rectan-

gular cross sections on dynamic drill characteristics as in Ref.
�27�. This study simulates the drill using the simple cantilever
pretwisted beam with rectangular cross section shown in Fig. 1�a�.
The drill is of length L, thickness t, breadth b, and rotates at a
speed of �. The deflection components ��r , t� and u�r , t� denote
the two transverse flexible deflections of the drill.

The equation of motion of the rotating drill is given by

�2

�r2�EIyy

�2u

�r2 + EIxy

�2�

�r2� −
�

�r
�Īyy

�3u

�t2 � r
+ Īxy

�3�

�t2 � r
�

+ �
�2�

�t2 − 2��
��

�t
− �u�2 + ��

��

�t
= 0 �1a�

�2

�r2�EIxx

�2�

�r2 + EIxy

�2u

�r2� −
�

�r
�Īxx

�3�

�t2 � r
+ Īxy

�3u

�t2 � r
�

+ �
�2�

�t2 + 2��
�u

�t
− ���2 + �u

��

�t
= 0 �1b�

where E and � are the Young’s modulus and the mass per unit
length of the drill respectively; and Ixx, Iyy, and Ixy are the mo-
ments of the cross-sectional area. The drill is considered to be
pretwisted with a uniform twist angle of �.

The area moments of inertia at position r can be derived as

Ixx�r� = IXX cos2� r

L
�� + IYY sin2� r

L
�� �2a�
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Iyy�r� = IXX sin2� r

L
�� + IYY cos2� r

L
�� �2b�

Ixy�r� = �IYY − IXX�sin� r

L
��cos� r

L
�� �2c�

where

IXX =
bt3

12
�3a�

IYY =
b3t

12
�3b�

and Īxx, Īxy, Īyy are the moments of mass.
The boundary conditions of the drill are given by

u = � = �u/�r = ��/�r = 0, at r = 0 �4a�

�2u/�r2 = �2�/�r2 = �3u/�r3 = �3�/�r3 = 0, at r = L �4b�
To investigate the time-dependent dynamic characteristics of

the drill in a high-speed drilling process, a time-dependent bound-
ary and axial thrust force are considered in simulations of the
drilling process at different drilling depths. Since the thrust force
remains constant as soon as drilling starts, only a moving drill
depth is employed in the current formulation. A unit step function
u*�t− t*� is employed to indicate the moment at which drilling
commences. Two moving Winkler-type elastic foundations �28�
are used to simulate the time-dependent drilling depth, as shown
in Fig. 1�b�. The linear axial velocity motion of the foundations is
considered. Finally, two moving stiffnesses kxx�t� and kyy�t�, are
used to represent the boundary stiffness.

Considering a time-dependent axial force and drilling depth, the
equation of motion of the drill in the drilling process can be re-
written as

�2

�r2�EIyy

�2u

�r2 + EIxy

�2�

�r2� −
�

�r
�Īyy

�3u

�t2 � r
+ Īxy

�3�

�t2 � r
�

+ Pu*�t − t*�
�2u

�r2 + 2kxxu
*�r − r*�u + �

�2u

�t2

− 2��
��

�t
− �u�2 − ��

��

�t
= 0 �5a�

�2

�r2�EIxx

�2�

�r2 + EIxy

�2u

�r2� −
�

�r
�Īxx

�3�

�t2 � r
+ Īxy

�3u

�t2 � r
�

+ Pu*�t − t*�
�2�

�r2 + 2kyyu
*�r − r*�� + �

�2�

�t2

+ 2��
�u

�t
− ���2 + �u

��

�t
= 0 �5b�

where u*�� denotes a unit step function and P�t�= Pu*�t− t*� indi-
cates that the axial thrust load commences at time t= t*. The time-
varying drill length �*�t� in the drilling process is given by

�*�t� = L − f � �t − t*�u*�t − t*� �6�

where f � �t− t*�u*�t− t*� is the drilling depth and f is the feed
velocity. For convenience, a nondimensionless drilling depth is
defined as follows

��t� =
f � �t − t*�u*�t − t*�

L
�7�

Taking rotational speed fluctuations into consideration, the rota-
tional speed of the drill is assumed to be

��t� = �0 + f��t� �8�

where f��t� is a small perturbation speed superimposed upon the

constant speed �0. Then �� /�t= ḟ��t�, and the equation of motion
of the drill during the drilling process can be rewritten in the
following form

�2
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�2u

�r2 + EIxy
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�Īyy
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+ �
�2u

�t2 − 2��0
��

�t
− ��0

2u

=2�f�

��

�t
+ 2��0f�u + �f�

2 u + � ḟ�� �9a�
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�2�

�r2 + EIxy

�2u

�r2� −
�

�r
�Īxx

�3�

�t2 � r
+ Īxy

�3u

�t2 � r
�

+ Pu*�t − t*�
�2�

�r2 + 2kyyu
*�r − �*�� + �

�2�

�t2

+ 2��0
�u

�t
− ���0

2

=− 2�f�

�u

�t
+ 2���0f� + ��f�

2 � − � ḟ�u �9b�

The solutions for the above equations are assumed to be

u�r,t� = �
i=1

m

pi�t��i�r� �10a�

��r,t� = �
i=1

m

qi�t��i�r� �10b�

where �i�r� are the comparison functions of Eqs. �9a� and �9b�,
and pi�t�, qi�t� are the corresponding weighting coefficients to be
determined. This study uses five exact solutions of the uniform
cantilever beam in the transverse direction, i.e., �i�r� for i
=1,2 , . . ,5, to discretize the equations of motion of the drill.

Using Galerkin’s method, the above equations of motion can be
derived in the following matrix form

Fig. 1 Schematic of drill considered in current drilling process
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�M�� p̈

q̈
	 + 2�0�G�� ṗ

q̇
	 + 
�K�a + Pu*�t − t*��K�b + �0

2�K�c

+ �K�d��p

q
	 = − 2f��G�� ṗ

q̇
	 − ḟ��G��p

q
	 − �2�0f� + f�

2 �

��K�c�p

q
	 �11�

where

�M� = ��M�1�� + �M�2�� �M�4��
�M�4�� �M�1�� + �M�3��  �12a�

�G� = � �0� − �M�1��
�M�1�� �0�  �12b�

�K�a = ��K�1�� �K�4��
�K�4�� �K�2��  �12c�

�K�b = �− �K�3�� �0�
�0� − �K�3��  �12d�

�K�c = �− �M�1�� �0�
�0� − �M�1��  �12e�

�K�d = ��2kxx��K�5�� �0�
�0� �2kyy��K�5��  �12f�

These matrices can be illustrated in detail as follows

Mij
�1� =�

0
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where
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L
�14a�

�̄* =
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For simplicity, Eq. �11� can be rewritten as

�A�
V̇� + �B�
V� = − 2
f�

�0
�C�
V� −

ḟ�

�0
�D�
V� − �2

f�

�0
+

f�
2

�0
2��E�

�
V� �15�

where

�A� = ��M� �0�
�0� �K�a + Pu*�t − t*��K�b + �0

2�K�c + �K�d


�16a�

�B� = � 2�0�G� 
�K�a + Pu*�t − t*��K�b + �2�K�c + �K�d�
− 
�K�a + Pu*�t − t*��K�b + �2�K�c + �K�d� �0�  �16b�

�C� = ��0�G� �0�
�0� �0�  �16c�

�D� = ��0� �0�G�
�0� �0�  �16d�

�E� = ��0� �0
2�K�c

�0� �0�  �16e�

and


V� = ��
ṗ

q̇
	

�p

q
	 � �16f�

The corresponding eigenvalue problem of Eq. �15�, i.e., the
eigenvalue problem of the conservative gyroscopic system with

constant drilling speed f�= ḟ�=0, is given by

�A�
V̇� + �B�
V� = 0 �17�

After modal calculation, the normalized modal matrix �	*� can be
solved and the above eigenvalue problem can be normalized as

�I�
Ẋ� + �
�
X� = 0 �18�

The modal matrix of Eq. �17�, i.e., �	*�, is formed by the real and
imaginary parts of the eigenvectors. The modal matrix �	*� is
normalized as

�	*�T�A��	*� = �I� �19a�
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�	*�T�B��	*� = �
� = �
� 0 − �1

�1 0
 �0� • • • �0�

�0� � 0 − �2

�2 0
 • • • �0�

• • • •

• • • •

• • • •

�0� �0� • • • � 0 − �2m

�2m 0
 � �19b�

where �1 ,�2 , . . .�2m are the corresponding natural frequencies of
Eq. �18�. Substituting the linear transformation, i.e., 
V�= �	*�
�
X�, into Eq. �16� and pre-multiplying this equation by �	*�
yields

�I�
Ẋ� + �
�
X� = − 2
f�

�0
�S�
X� −

ḟ�

�0
�Q�
X� − �2

f�

�0
+

f�
2

�0
2��Z�
X�

�20�

where

�S� = �	*�T��0�G� �0�
�0� �0� �	*� �21a�

�Q� = �	*�T��0� �0�G�
�0� �0� �	*� �21b�

�Z� = �	*�T��0� �0
2�K�c

�0� �0� �	*� �21c�

To match the form of matrix �
�, the matrices on the right-hand
side are partitioned into R�R pieces of 2�2 block, where R
=2m. Equation �19� can be uncoupled and expressed in compo-
nent form as

�̇n − �nn = − 2
f�

�0
��

r=1

R

Snr
11�r + �

r=1

R

Snr
12r� −

ḟ�

�0
��

r=1

R

Qnr
11�r

+ �
r=1

R

Qnr
12r� − �2

f�

�0
+

f�
2

�0
2���

r=1

R

Znr
11�r + �

r=1

R

Znr
12r�
�22a�

̇n + �n�n = − 2
f�

�0
��

r=1

R

Snr
21�r + �

r=1

R

Snr
22r� −

ḟ�

�0
��

r=1

R

Qnr
11�r

+ �
r=1

R

Qnr
12r� − �2

f�

�0
+

f�
2

�0
2���

r=1

R

Znr
21�r + �

r=1

R

Znr
22r�
�22b�

where Snl
ij , Qnl

ij , and Znl
ij are the i-jth entries of the n-lth block

matrices of �S�, �Q�, and �Z�, respectively, and 
X�
= ��1 ,1 ,�2 ,2 , . . . ,�R ,R�T.

In this study, the perturbation velocity, f��t�, is assumed to be
small and periodic. It can therefore be expressed as a Fourier
series, i.e., f��t�=� j=−Q

Q Fje
i� jt, where the parameter � j is the per-

turbation frequency. As noted, the perturbation term f��t� is very
small in comparison to the constant speed, �0. Therefore, the
module Fj should also be much smaller than the constant speed,

�0. Defining a small parameter term � as �FM /�0�, where �FM� is
the maximum magnitude of components Fj for j=1,2 ,3 , . . . ,Q,
Eqs. �22a� and �22b� can be rearranged as

�̇n − �̄nn = − 2� f̄��
r=1

R

Snr
11�r + �

r=1

R

Snr
12r�

− i�
−M

M

�̄ j� f̄ je
i�̄ jt��

r=1

R

Qnr
11�r + �

r=1

R

Qnr
12r� − �2� f̄ + �2 f̄2�

���
r=1

R

Znr
11�r + �

r=1

R

Znr
12r� �23a�

̇n − �̄n�n = − 2� f̄��
r=1

R

Snr
21�r + �

r=1

R

Snr
22r�

− i�
−M

M

�̄ j� f̄ je
i�̄ jt��

r=1

R

Qnr
21�r + �

r=1

R

Qnr
22r�

− �2� f̄ + �2 f̄2���
r=1

R

Znr
21�r + �

r=1

R

Znr
22r� �23b�

where f̄ = f� / �FM�, f̄ j =Fj / �FM�, and �̄=� /�EIXX /�AL4.
By employing the multiple-scales perturbation method, the in-

stability regions of the drilling system can be solved and analyzed.
Due to the complexity of the present investigation and the negli-
gible difference between the results of the first- and second-order
approximations, the second-order expansion is not carried out
�23,24,26�. Following calculation, the unstable regions of the drill
system can be expressed as follows:

�i� Frequency �̄ j away from �̄p± �̄q. The system is always
stable in this state.

�ii� Frequency �̄ j near �̄p+ �̄q. Transition curves are used to
locate the stability boundaries. In this case, the transition
curves can be derived as follows

�̄ j = �̄p + �̄q ± 2��
pq
̄qp + O��2� �24a�

where


pq = �
j=1

Q

F̂j�− iSpq
21 − Spq

22 +
1

2
�̄ jQpq

21 −
1

2
i�̄ jQpq

22 − iZpq
21

− Zpq
22� − �

j=1

Q

F̂j�− Spq
11 + iSpq

12 − i
1

2
�̄ jQpq

11 −
1

2
�̄ jQpq

12

− Zpq
11 + iZpq

12� �24b�
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qp = �
j=1

Q

F̂j�− iSqp
21 − Sqp

22 +
1

2
�̄ jQqp

21 −
1

2
i�̄ jQqp

22 − iZqp
21

− Zqp
22� − �

j=1

Q

F̂j�− Sqp
11 + iSqp

12 − i
1

2
�̄ jQqp

11 −
1

2
�̄ jQqp

12

− Zqp
11 + iZqp

12� �24c�

�iii� Frequency �̄ j near �̄p− �̄q. Similarly, the transition curves
of the combination resonances of the different type can be
solved as

�̄ j = �̄p − �̄q ± 2��− 
pq
̄qp + O��2� �25�

Results and Discussion
This study investigated the dynamic instability variation in a

high-speed drilling process. The geometrical parameters of the
drill were considered to be: �t /L�=0.005, �b /L�=0.01, and �
=31.416 rad/m. In accordance with the data provided in Ref.
�29�, the thrust load was specified as P=1500 N, the feed speed as
f =0.002 m/s, and the lateral stiffness as kxx=kyy =1�108 N/m2.
For convenience, the following dimensionless drilling speed was
employed

�̄0 = �0/�EIXX/�AL4 �26�
Table 1 lists the difference in the first natural frequency calcu-

lated by employing the finite element method �9,11� and the
method with the approximated comparison functions as men-
tioned in this study. Results indicated that the eigensolutions of a
cantilever beam can be used to formulate the equations of motion
of a twisted beam with good accuracy. Figure 2 shows the varia-

tion of the fundamental natural frequencies of the drill during the
drilling process. The drill contacts the work piece at time t= t*

=0.15 s. The results show that a constant fundamental natural
frequency is obtained before the drill makes contact with the work
piece. The fundamental natural frequency then drops abruptly as
the drill tip touches the work piece at time t= t*=0.15 s. During
the drilling process, i.e., t� t*, the fundamental natural frequency
of the drill increases gradually with increasing drilling depth, ��t�.
In general, the stiffness of the drill increases as the length of the
drill remaining outside of the work piece, i.e., �*�t�=L− f � �t
− t*�u*�t− t*�, decreases. The simulated and measured dynamic re-
sponses of the drill in the drilling process are illustrated in Figs.
3�a� and 3�b�. The nondimensional amplitude ū�r� is displayed in
Fig. 3�a�. A noncontact displacement sensor, KAMAN KD 2300
2S, is attached on the spindle to measure the vibration amplitude
in the drilling operation. A large transverse vibration occurs at
time t= t*=0.15 s. The time domain responses of the drill in
Figs.3�a� and 3�b� indicate that a serve vibration is observed as the
drill touches the work piece. The vibration is depressed as the drill
drills into the work piece.

As noted earlier, rotational speed of the drill at normal operat-
ing conditions never remains absolutely constant. Theoretically, at
a certain rotational speed, the speed fluctuations may cause the
system to become dynamically unstable. In this paper, “the certain
rotational speed” indicates the speed that will introduce a para-
metric resonance. The reason to introduce a perturbation with this
speed is to derive the necessary condition for an unstable system.
This perturbation assumption has been widely used �5,6,21� to

Table 1 The difference in the first natural frequency of the
pretwisted beam solved by employing finite element model
†9,11‡ and the approximation model used in this work „L
=100 cm, t=0.5 cm, b=8 cm…

Pretwisted
angle
�deg�

Ref.
�9�

Ref.
�11�

This
study

0 1.00 1.00 1.000
45 1.01 1.01 1.007
90 1.02 1.03 1.028

Fig. 2 Variation of lowest natural frequency of drill in drilling
process

Fig. 3 Dynamic response of drill in drilling process
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derive the instability criterion. For simplicity, this study assumes
the perturbation speed to be f̄�t�=2 cos �̄t. Figure 4�a� shows that
the lowest unstable region is located near 2�̄1=6.483 prior to
drilling. As shown in Fig. 4�b�, a wider unstable region occurs at
time t= t*=0.15 s when the drill first makes contact with the work
piece, and the unstable region shifts from 2�̄1=6.483 to 2�̄1
=4.375. Once the drill tip has entered the work piece, Fig. 4�c�
shows that the lowest unstable region of the drill shifts gradually
to a higher frequency, i.e., 2�̄1=17.262. The prediction of the
instability of a rotating drill before drilling into a work piece, as
shown in Fig. 4�a�, is similar to the prediction of the stability of a
rotating pretwisted beam �12�. In this study, the instability of a
drill in the drilling process, as shown in Fig. 4�c�, is simulated as
the rotating beam with a spring support at the end. Numerical
results indicate that the unstable zones of the drill will be de-
pressed and shift toward higher frequencies as the drill drilling
into the work piece.

Another key factor affecting the distribution of the instability
regions is the applied axial thrust load. Figure 5 shows the varia-
tion in the instability regions for different axial thrust load with
different feed velocity. The lowest unstable region, i.e., located
near 2�̄1, for the drill system with a dimensionless perturbation
speed of �=0.2 is plotted. The results indicate that the unstable
region becomes larger and shifts to a lower frequency at the mo-
ment when the drill first touches the work piece. As the drilling

depth increases, the unstable region shifts gradually to a higher
frequency. The results also show that the fundamental unstable
region expands and shifts to a lower frequency when the magni-
tude of the applied thrust load is increased.

This study also examined the effect of the pretwisted angle of
the drill on the variation of dynamic instability in the drilling
system. The variations of the fundamental unstable region when
drilling is performed with pretwisted angles of �=15.708 and �
=62.832 are plotted in Figs. 6�a� and 6�b�, respectively. As re-
ported by previous studies �5,6,9,10�, the current results reveal

Fig. 4 Variation in instability zone of drill during drilling
process

Fig. 5 Variation in the instability regions for different axial
thrust load with different feed velocity

Fig. 6 Variation in instability zone of drill with different
pretwisted angles
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that the two lower lateral natural frequencies of the drill become
virtually identical as the pretwisted angle of the drill increases.
The asymmetric property of the drill is diminished as the
pretwisted angle is increased. The fundamental unstable region
which exists near 2�̄1 during the drilling process becomes smaller
as the asymmetric property of the drill is reduced. Hence, the
fundamental unstable region becomes narrower as the pretwisted
angle increases.

Figure 7 illustrates the variation of the fundamental instability
region of the drill at drilling speeds of �̄=0.75 and 1.50. It is
observed that the fundamental unstable region of the drill shifts
and becomes larger as the drilling speed is increased.

Conclusions
This study has formulated and investigated the variation of the

parametric resonance instability in a drilling process. The simu-
lated and measured dynamic responses during the drilling process
confirm the feasibility and accuracy of the proposed model. The
major conclusions to be drawn from the current analysis and nu-
merical results are summarized as follows:

1. The dynamic response of a drill in a drilling process is time
dependent. Fluctuations of the time-varying drilling depth,
drilling speed, and axial thrust load may change the natural
frequencies of the drill and the distribution of the instability
regions.

2. The fundamental unstable region of the drill shifts and be-
comes significantly larger at the moment that the drill first
makes contact with the work piece. Additionally, a variation
in the dynamic response occurs as the drilling depth in-
creases.

3. The applied thrust force, drilling speed, and pretwisted angle
all influence the distribution of the dynamic instability re-
gions during the drilling process.
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Normality Structures With
Thermodynamic Equilibrium
Points
Enriched by the nonlinear Onsager reciprocal relations and thermodynamic equilibrium
points (Onsager, Phys. Rev., 37, pp. 405–406; 38, pp. 2265–2279), an extended normality
structure by Rice (1971, J. Mech. Phys. Solids, 19, pp. 433–455) is established in this
paper as a unified nonlinear thermodynamic theory of solids. It is revealed that the
normality structure stems from the microscale irrotational thermodynamic fluxes. Within
the extended normality structure, this paper focuses on the microscale thermodynamic
mechanisms and significance of the convexity of flow potentials and yield surfaces. It is
shown that the flow potential is convex if the conjugate force increment cannot not
oppose the increment of the rates of local internal variables. For the Rice fluxes, the
convexity condition reduces to the local rates being monotonic increasing functions with
respect to their conjugate forces. The convexity of the flow potential provides the ther-
modynamic system a capability against the disturbance of the thermodynamic equilib-
rium point. It is proposed for time-independent behavior that the set of plastically ad-
missible stresses determined by yield conditions corresponds to the set of thermodynamic
equilibrium points. Based on that viewpoint, the intrinsic dissipation inequality is just the
thermodynamic counterpart of the principle of maximum plastic dissipation and requires
the convexity of the yield surfaces. �DOI: 10.1115/1.2722772�

Keywords: irreversible thermodynamics, equilibrium point, Onsager fluxes, normality,
convexity

1 Introduction
Linear irreversible thermodynamics based on the Onsager �1,2�

reciprocal relations where thermodynamic fluxes and forces are
assumed to be linearly dependent and related by a symmetric phe-
nomenological coefficient matrix, have provided access to both
the understanding and the analysis of a wide range of physical
phenomena, see, e.g., De Groot and Mazur �3�. The linear theory
is restricted to linear thermodynamic processes or else the devia-
tion from equilibrium have to be sufficiently small so that a linear
approximation is valid. However, many processes in continuum
mechanics are nonlinear, especially for inelastic behaviors of sol-
ids. The nonlinear generalization of the linear theory includes the
normality structure of Rice �4,5�, the orthogonality condition of
Ziegler �6�, and the so-called “nonlinear Onsager reciprocal rela-
tions” of Edelen �7�.

As an internal variable approach, the normality structure pro-
posed by Rice �4,5� has been an appealing constitutive framework
for solids undergoing nonlinear irreversible thermodynamic pro-
cesses. Rice’s kinetic rate laws of microscale �e.g., at the disloca-
tion level� internal variables, with each rate being stress dependent
only via its conjugate thermodynamic force, are cornerstones of
the normality structure and represent a wide class of inelastic
behaviors. This type of kinetic rate laws are termed the “Rice
fluxes” in this paper.

The Rice fluxes are only a sufficient condition leading to the
normality structure. As indicated by Yang et al.�8� and briefed in
Sec. 3, the necessary and sufficient condition is the nonlinear On-
sager reciprocal relations. The general thermodynamic fluxes sat-
isfying the nonlinear Onsager reciprocal relations is termed the
“Onsager fluxes” by Edelen �9� which embody the Rice fluxes as

a special case. It is revealed that the normality structure stems
from the microscale irrotational thermodynamic fluxes. In Sec. 4,
the concept of thermodynamic equilibrium points is introduced
into the normality structure following the work of Edelen �9�.
Enriched by the nonlinear Onsager reciprocal relations and ther-
modynamic equilibrium points, an extended normality structure is
established in this paper as a unified nonlinear thermodynamic
theory of solids. It is suggested in Sec. 5 that the independence of
the elementary processes at the microscale should be taken as the
more fundamental postulate of the original normality structure of
Rice �4�, rather than the usual statement that the each internal
variable rate is stress dependent only via its conjugate thermody-
namic force.

Within the extended normality structure, this paper focuses on
the microscale thermodynamic mechanisms and significance of
the convexity of flow potentials and yield surfaces. For the Rice
fluxes, this issue have been addressed by Rice �5� and Yang et al.
�8� for some special cases, as shown in Sec. 6.

It is shown that the flow potential is convex if the conjugate
force increment cannot not oppose the increment of the rates of
local internal variables. For the Rice fluxes, the convexity condi-
tion reduces to the local rates being monotonic increasing func-
tions with respect to their conjugate forces. The convexity of the
flow potential provide the thermodynamic system a capability
against the disturbance of the thermodynamic equilibrium point.

It is proposed for time-independent behavior that the set of
plastically admissible stresses determined by yield conditions cor-
responds to the set of thermodynamic equilibrium points. Based
on that viewpoint, Rice’s kinetic rate laws for time-independent
behavior is the requirement that the intrinsic dissipation inequality
should hold locally. Furthermore, the global intrinsic dissipation
inequality is the thermodynamic counterpart of the principle of
maximum plastic dissipation and requires the convexity of the
yield surfaces.

The orthogonality condition of Ziegler �6� has also been a fruit-
ful thermodynamic approach, especially in the aspect of soil mod-
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els �10–12�. An overall discussion on the orthogonality condition
from a modern thermodynamic point of view has been provided
by Rajagopal et al. �13�. The relationship between the normality
structure and the orthogonality condition has been addressed by
Yang et al. �8,14�. As shown in Sec. 6, the homogeneity of both
the Rice fluxes and Onsager fluxes directly leads to the orthogo-
nality condition; thus, the thermodynamic processes described by
the orthogonality condition are the subset of the processes de-
scribed by the extended normality structure.

2 Normality Structure
The normality structure proposed by Rice �4,5� is a discrete

internal-variable theory for finite deformation. This approach
views inelastic deformation of a given sample of material of the
type considered under macroscopically homogeneous strain and
temperature as a sequence of constrained equilibrium states: the
state of the material sample at any given time in the deformation
history can be fully characterized by the corresponding values of
strain and temperature and a collection of internal variables that
represent the extent of microstructural rearrangement within the
sample. Consider a material sample of size V, which is measured
in an unloaded reference state and at a reference temperature �0.
Introduce the specific free energy � and its Legendre transform �
with respect to strain2

� = ���,�,H�, � = ���,�,H� = �:
��

��
− � �1�

where � denotes temperature; � denotes any strain tensor, objec-
tive and symmetric, that measures deformation from an arbitrary
reference state; � denotes the symmetric conjugate stress such
that � :d� is the work per unit volume of the adopted reference
state in any virtual deformation d�; H denotes symbolically the
current pattern of microstructural rearrangement of constituent el-
ements of the materials. At fixed H, variations of � and � neces-
sarily induce a purely elastic response and lead to the stress-strain
relations,

� =
����,�,H�

��
, � =

����,�,H�
��

�2�

If �=��� ,� ,H�, the inelastic part of a strain increment is defined
as

dp� = ���,�,H + dH� − ���,�,H� �3�

and the plastic strain associated with the current plastic state H
and the reference temperature �0 is

�p = �p�0,�0,H� �4�
Consider two neighboring patterns of microstructural rearrange-
ment denoted by H, H+dH. It is assumed that a set of incremental
scalar internal variables d�1 ,d�2 , . . . ,d�n characterize the specific
local rearrangements, which are represented collectively by dH, at
sites throughout the material sample. The d�’s and dH are related
by

1

V
f� d�� = − dp� = dp� �5�

where3

dp� = ���,�,H + dH� − ���,�,H�

dp� = ���,�,H + dH� − ���,�,H� �6�
The inelastic part of a strain increment is, due to Eqs. �2�, �5�, and
�6�,

dp� = ���,�,H + dH� − ���,�,H� =
��dp��

��
=

1

V

�f�

��
d�� �7�

which is termed Rice’s flow rule in this paper. Rice’s flow rule is
the fundamental relationship and starting point of the normality
structure. Equation �5� also defines the thermodynamic forces
f1 , f2 , . . . , fn �collectively f� conjugate to the variables,

f = f��,�,H� or f = f��,�,H� �8�
The corresponding set of total internal variables

� = ��1,�2, . . . ,�n� �9�
generally are not state variables in the sense that thermodynamic
state functions are not direct functions of �, but instead depend on
the path history of �. In cases when � is one set of explicit state
variables, the conjugate forces can be determined as

f� = V
��

���

= − V
��

���

, � = ���,�,��, � = ���,�,�� �10�

Following the second law of thermodynamics, the entropy pro-
duction function should be always non-negative

� =
1

�V
f��̇� � 0 �11�

A unifying normality structure emerges in macroscopic constitu-
tive relations when the following class of kinetic relations is
adopted: at any given temperature and pattern of internal rear-
rangement within the material sample, the rate at which any spe-
cific structural rearrangement occurs is fully determined by the
thermodynamics force associated with that rearrangement. That is,

�̇� = �̇��f�,�,H�, �� = 1,2, . . . ,n� �12�
The thermodynamic fluxes satisfying Eq. �12� is termed the Rice
fluxes in this paper. Therefore, the kinetic rate laws lead to a flow
potential Q,

dQ =
1

V
�̇� df�, Q = Q�f,�,H� =

1

V�0

f

�̇� df� �13�

where the integration is carried out at fixed � and H, and defines
a direct function Q of f since each term in the integrand is a total
differential. Then the kinetic rate laws can be recast as

�̇� = V
�Q

�f�

�14�

Therefore, the following normality structure holds, noting f
= f�� ,� ,H�,

�̊p =
dp�

dt
=

�Q

��
, Q = Q��,�,H� = Q�f,�,H� �15�

where t denotes time, since, due to the first equation in Eq. �13�

�Q

��
=

1

V

�f�

��
�̇� �16�

Time-independent inelastic behavior �as in the classical elastic-
plastic idealization for metals� was also addressed by Rice �4�
who proposed the time-independent counterpart of the kinetic rate
laws �12�,

�̇���0 if f� = f�
U

=0 if f�
L 	 f� 	 f�

U

	0 if f� = f�
L 	 �� = 1,2, . . . ,n� �17�

where f�
L and f�

U are functions of � and H, which mark the lower
and upper limits to the range of forces that are incapable of in-
ducing a corresponding structural rearrangement. Evidently, Eq.

�17� is consistent with Eq. �12� in the sense that �̇� is uniquely
determined by f�. It is implied by Eq. �17� that the yield condition

2The Legendre transforms actually involve a maximization on the strain.
3In this paper, Einstein’s summation convention is adopted for repeated indexes.

However, if an index range is listed like � in Eq. �12�, the index is considered as a
free index without the summation convention.
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of an internal variable �� is just its conjugate force f�. Therefore,
Eq. �17� leads to an associated flow rule, in view of Eq. �7�.

It should be also noted that local inertia terms, temperature
gradients, etc., within the material sample �say, as a consequence
of local fields due to dislocation motion� have not been
considered.

3 Nonlinear Onsager Reciprocal Relations and On-
sager Fluxes

The Rice fluxes are only a sufficient condition leading to the
normality structure. It is shown in this section that the necessary
and sufficient condition is the nonlinear Onsager reciprocal rela-
tions. The general thermodynamic fluxes satisfying the nonlinear
Onsager reciprocal relations are termed the “Onsager fluxes” by
Edelen �9�, which embody the Rice fluxes as a special case. As
compared to the Rice fluxes �12�, the following general fluxes are
taken as the starting point in this section:

�̇� = �̇��f,�,H�, �� = 1,2, . . . ,n� �18�
Evidently, the Rice fluxes are just a specific case of the general
fluxes. For the general fluxes, the necessary and sufficient condi-

tion leading to the exact differential for f��̇� is given by

��̇�

�f


=
��̇


�f�

, ��,
 = 1,2, . . . ,n� �19�

The condition �19� is the so-called nonlinear Onsager reciprocal

relations by Edelen �7�. The general fluxes �̇ satisfying the non-
linear Onsager reciprocal relations are termed the “Onsager

fluxes” by Edelen �9�. If Eq. �18� gives a linear relation, i.e., �̇�

=L�
f
, the well-established reciprocal relations of �1,2�, L�


=L
�, is reproduced from the nonlinear Onsager reciprocal rela-
tions Onsager �19�. Edelen �7� has shown that the nonlinear On-
sager reciprocal relations �19� result from the requirement that the
entropy production rate � be a C1, non-negative, convex function
of f with an absolute minimum at the equilibrium point.

The Onsager fluxes embody the Rice fluxes as a special case
since the nonlinear Onsager reciprocal relations are fulfilled auto-
matically for the Rice fluxes. Evidently, all deduced results in Sec.
2 of the normality structure still hold based on the Onsager fluxes.
Therefore, we furnish the normality structure with a rigorous
mathematical and physical basis and enlarge significantly the ba-
sis of Rice’s thermodynamic framework.

3.1 Physical Significance and Basis. Some equivalent ex-
pressions of the nonlinear Onsager reciprocal relations �19� are

given as follows. The fluxes �̇ at fixed � and H constitutes a
n-dimensional vector field in the space of its affinity f space.
Evidently, the nonlinear Onsager reciprocal relations �19� are
equivalent to the irrotational condition at every point in the vector
field

�f � �̇ = 0 �20�

where �f� denote the curl operator in f space. Therefore, from a

fluid point of view, the Onsager fluxes �̇ represent an irrotational
or potential flow in its affinity space. The irrotational condition
�20� can be reformulated into an equivalent integral form based on
Stokes’ theorem


 �̇ · df = 
 �̇� df� = 0 �21�

at fixed � and H and for any oriented simple closed curve in f
space.

The irrotational condition �20� or �21� furnishes fundamentally
the physical basis of the normality structure. However, the basis
seems not as stable and solid because Brown �15� has noted that:

The point of view adopted here is that the patterns of plastic

flow observed in nature are unpredictable because they often con-
tain a rotational component; hence, there are many solutions for
the continuity equation satisfied by the plastic displacement. Fur-
thermore, and more fundamentally, the onset of plasticity marks
the end of homogeneous strain: plastic displacement is of neces-
sity localized on slip planes; thus, the outcome of an atomistic
theory can be only plastic displacement and its spatial
distribution.

The issue will be further addressed from a multiscale point of
view in Sec. 3.2.

3.2 Multiscale Formulation and Significance. The local in-
ternal variable set � generally contains numerous elements. One
set of practical constitutive equations for engineering materials
usually employ a few of macroscopic internal variables. In the
normality structure by Rice �4�, one set of much reduced average
internal variables �= ��1 ,�2 , . . . ,�m� can be introduced as the av-
erage measurements of �

� = ���1,�2, . . . ,�n;V� � = 1,2, . . . ,m � n� �22�

where V indicates averaging over the volume, which yields the
incremental relationship

�� =
��

���

��� �23a�

or

�̇ =
��

���

�̇� �23b�

The thermodynamic forces acting on the averaging variables � are
g1 ,g2 , . . . ,gm �collectively g�. In order for the averaging variables
� to be able to describe the thermodynamic system characterized
by �, the following equality has to hold for any arbitrary ��:

g�� =
1

V
f���� �24�

It is revealed by Yang et al. �16� that the variational equation �24�
can be further formulated into an extremum principle, a principle
of maximum equivalent dissipation. Substituting Eq. �23a� into
Eq. �24� leads to

f� = Vg

����,V�
���

= f��g,�,H� �25�

which further leads to

����,V�
���

=
1

V

�f��g,�,H�
�g

�26�

Therefore, the relationship between thermodynamic fluxes and af-
finities at microscale and macroscale is established, based on Eq.
�23b� and Eq. �25�

�̇ =
��

���

�̇� =
1

V
�̇�

�f��g,�,H�
�g

�27�

Substituting Eq. �14� into �27�, the normality structure at the mac-
roscale emerges

�̇ =
�Q�g,�,H�

�g

�28�

Multiplying �27� by dg, one obtains

�̇ dg =
1

V
�̇�

�f��g,�,H�
�g

dg =
1

V
�̇� df� �29�

at fixed � and H. The relationship �29� is deduced by Yang et al.
�16�. In view of Eq. �29�, the irrotational condition �21� requires
that
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 �̇ · dg = 
 �̇ dg = 0 �30�

at fixed � and H and for any oriented simple closed curve in g
space. The microscale irrotational condition �21� always ensures
its macroscale counterpart �30�, but the converse statement does
not hold, since there is no one-to-one correspondence between �
and �. Therefore, even if the microscale irrotational condition �21�
does not hold as indicated by Brown �15�, the macroscale irrota-
tional condition �30� still can be recoursed to some extent.

4 Thermodynamic Equilibrium Points
In this section, the concept of thermodynamic equilibrium

points is introduced into the normality structure following the
work of Edelen �9�. As remarked by Edelen �9�, a thermodynamic
system described by autonomous ordinary differential equations is
said to be thermodynamically admissible if and only if the system
has a equilibrium point which is asymptotically stable. The con-
jugate force f space is a n-dimensional Euclidean space Rn, and
the equilibrium point is a point in the space

f0 = f0��,H� = �f1
0, f2

0, . . . , fn
0� �31�

The thermodynamic system to be asymptotically stable about f0 is
such that the system will wind up at f0 as t tends to infinity if the
system starts out at t=0 at any point in some finite neighborhood
of f0 �see �3,9��. With the equilibrium point, the intrinsic dissipa-
tion inequality �11� should be modified as �see e.g., �3��

� =
1

�V
�f� − f�

0��̇� � 0 or � =
1

�V
�f − f0� · �̇ � 0 �32�

which leads to

� = 0 at f = f0 �33�

Furthermore, since � is the entropy production of a physical sys-
tem, it has an absolute minimum at f0, and hence, we must have

��

�f
= 0 at f = f0 ⇒ �̇ = 0 at f = f0 �34�

With the equilibrium point, Eq. �5� should be modified as follows:

1

V
�f� − f�

0�d�� = − dp� = dp� �35�

which leads to, due to Eq. �32�,

�� =
1

V
�f� − f�

0��̇� = −
dp�

dt
=

dp�

dt
�36�

The flow potential should be modified as

Q = Q�f,�,H� =
1

V�f0

f

�̇� df� �37�

Therefore, the entropy production function can be determined
uniquely by the flow potential functions

��f,�,H� =
1

�
�f� − f�

0�
�Q�f,�,H�

�f�

�38�

and conversely �see e.g., �9��

Q�f,�,H� = ��
0

1

���f + �1 − ��f0,�,H�
d�

�
�39�

Evidently, the thermodynamics of Rice �4,5� is just a special case
with f0=0. In view of Eqs. �34� and �39�, we have Q�0 and

Q = 0,
�Q

�f
= 0 at f = f0 �40�

These properties are the same as those of �. Especially, both Q
and � have their absolute minimums at f0. Eqn. �38� implies that

�f� − f�
0�

�Q

�f�

= �f� − f�
0�

�Q

��f� − f�
0�

� 0 �41�

Thus, the flow potential Q is a non-negative and monotonic in-
creasing function along any ray originating from f0. In other
words, the intrinsic dissipation inequality is guaranteed by the
monotonicity of Q, so the monotonicity is an essential property of
Q.

5 Intrinsic Dissipation for Rice Fluxes
The intrinsic dissipation inequality �11� or its generalized form

�32� is required to hold globally and not locally. In other words,
the intrinsic dissipation inequality is not necessary to hold for
each microscale internal variable. Let us consider the time-

independent kinetic rate laws �17�. Since �̇�=0 for the whole
range f�

L 	 f�	 f�
U, the range is the set of thermodynamic equilib-

rium points of f�. Then the time-independent kinetic rate laws
�17� can be condensed into

�f� − f�
0��̇� � 0, f�

L 	 f�
0 	 f�

U �� = 1,2, . . . ,n� �42�

where f�= f�
L or f�= f�

U. It implies that the intrinsic dissipation
inequality holds locally. With the locality, the intrinsic dissipation
inequality �32� is fulfilled automatically and can be recast as

�f� − f�
0��̇� � 0 or �f − f0� · �̇ � 0 �43�

Let us consider the locality of intrinsic dissipation for time-
dependent behavior, similar to Eq. �42�,

�f� − f�
0��̇� � 0 �� = 1,2, . . . ,n� �44�

where f1
0 , f2

0 , . . . , fn
0 constitute a thermodynamic equilibrium point

f0 as given by Eq. �31�. The global intrinsic dissipation inequality
�32� is then ensured by the locality �44�. Unlike time-independent
behavior, it is assumed that there exists only one current thermo-
dynamic equilibrium point f0�� ,H� for a time-dependent thermo-
dynamic system. Evidently, the locality of intrinsic dissipation
�44� is ensured by the following condition:

�̇���0 if f� � f�
0

=0 if f� = f�
0

	0 if f� 	 f�
0 	 �� = 1,2, . . . ,n� �45�

which is just the time-dependent counterpart of Eq. �17�.
A thermodynamic process always involves many elementary

processes. For example, each internal variable �� corresponds to
an elementary process in the normality structure. In general, the
elementary processes are coupled, and the entire process is termed
complex by Ziegler �6�, e.g., the one defined by Eq. �18�. If the
elementary processes are uncoupled or independent, the entire
process is termed compound by Ziegler �6�, e.g., the one defined
by Eq. �12�. Thus, the original normality structure of Rice �4� is
only able to describe compound processes. Since most real ther-
modynamic processes are complex ones, the original normality
structure can only provide approximate descriptions to those real
processes. Furthermore, the locality of intrinsic dissipation �42� or
�44� is also a natural result of the independence or uncoupling of
the elementary processes. Therefore, the independence of the el-
ementary processes should be taken as the more fundamental pos-
tulate of the original normality structure of Rice �4�, rather than
the usual statement that the each internal variable rate is stress
dependent only via its conjugate thermodynamic force.
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6 Convexity of Flow Potential Functions
If the flow potential Q is convex with respect to f, its Hessian

matrix H is positive definite �see e.g., �17��. The Hessian matrix
of the flow potential Q in f space is denoted by

H�Q,f� = H�

=

�2Q

�f��f


�46�

which is symmetric following its definition, i.e., H�
=H
� or H
=HT. Evidently, the Hessian matrces for the Rice fluxes are diag-
onal ones.

Yang et al. �8� have shown that the homogeneity of the kinetic

rate laws can lead to the convexity of the flow potentials. If �̇ are
homogeneous functions of degree q in f

��̇�

�f


f
 = q�̇� �47�

the nonlinear phenomenological equations emerges,

�̇� = L�
f
, L�
 =
1

q
H�
 �48�

For the Rice fluxes, Eq. �47� reduces to

��̇�

�f�

f� = q�̇�, �� = 1,2, . . . ,n� �49�

Therefore, if the homogeneity and nonlinear phenomenological
equation, Eqs. �47� and �48�, hold true, the convexity is directly
required by the intrinsic dissipation inequality �11�. As shown by
Yang et al. �8,14�, the homogeneity directly leads to the orthogo-
nality condition of Ziegler �6�. Using integration by parts and the
homogeneity �47�, the flow potential Q defined in Eq. �13� can be
recast as

Q�f,�,H� =
1

V�0

f

�̇� df� =
1

V
�̇�f� −

q

V�0

f

�̇� df� �50�

which leads to, due to Eq. �11�,

Q =
�

q + 1
� �51�

With the linear relation �51�, the normality structures at the mi-
croscale or macroscale, Eqs. �14� and �28�, reduce to the orthogo-
nality condition of Ziegler �6�. However, the homogeneity is only
a sufficient condition leading to the convexity. Let us address the
necessary and sufficient condition. Note that

d�̇� =
��̇�

�f


df
 = H�
 df
 �52�

at fixed � and H. If the flow potential Q is a convex function, the
convexity implies that

df� d�̇� � 0 �53�

holds for any df�. This inequality is the necessary and sufficient
condition for the convexity of flow potential functions of the On-
sager fluxes. Evidently, monotonic increasing kinetic rate laws can
ensure the inequality for the Rice fluxes. In general, the thermo-
dynamic admissible Rice fluxes with a convex flow potential
should satisfy

��̇�

�f�

� 0, �̇��f�
0 ,�,H� = 0, �� = 1,2, . . . ,n� �54�

Evidently, Eq. �45� embodies Eq. �54� as a special case. The con-
vexity in f-space generally cannot lead to the convexity in stress
space. Note that, in view of Eq. �15�,

d�̊p =
�2Q

��2 :d� �55�

at fixed � and H. Thus, the necessary and sufficient condition for
the convexity of flow potential functions in the stress space re-
quires that

d�:d�̊p � 0 �56�

holds for any d�. The condition is quite similar to Drucker’s
inequality �18� if replacing �̇p with �p.

Rice �5� has shown that the flow potential is convex in stress
space if the local rates are monotonic increasing functions and the
conjugate forces are linear in �. It is quite easy to prove the
special case. The assumed monotonicity ensures the inequality
�53�, and in turn, the convexity in f-space. The assumed linearity
is

f� = f�
0 + f��:�, �� = 1,2, . . . ,n� �57�

which leads to, in view of Eq. �15�,

�̊p =
1

V
�̇�f�� �58�

With the two relations, it is easy to show that

d�:d�̊p =
1

V
df� d�̇� �59�

Therefore, the convexity in f-space can be transferred to the stress
space for the special case.

7 Thermodynamic Significance of Convex Flow Poten-
tials

As discussed in Sec. 4, the flow potential Q is a non-negative
and monotonic increasing function along any ray originating from
f0, in order to ensure the intrinsic dissipation inequality. In gen-
eral, the entropy production function � does not possess the
monotonicity since the following direction derivative is not en-
sured to be always positive,

�f� − f�
0�

��

�f�

= � +
1

�
�f� − f�

0�
�2Q

�f��f


�f
 − f

0� �60�

Evidently, the entropy production function � is also a monotonic
increasing function along any ray originating from f0 if the flow
potential Q is a convex function.

One set of prescribed Onsager fluxes �̇ with one equilibrium
point f0, as a n-dimensional vector field in f-space, ensures a
scalar flow potential field in the same space. In the following part,
� and H are always considered to be fixed, and then the flow
potential can be denoted by Q�f� without a loss of generality. The
global intrinsic dissipation inequality should hold at any point in
f-space,

�f − f0� · �̇ � 0, �̇ =
�Q

�f
∀ f � Rn �61�

If the equilibrium point has a deviation, e.g., from f0 to f*, for the

prescribed flux field �̇, the global intrinsic dissipation inequality,

�f − f*� · �̇ � 0, �̇ =
�Q

�f
�62�

cannot be fully ensured. In this paper, f* is termed a quasi-
equilibrium point. Can the violation points for the inequality �62�
be confined within a limited area in f-space?

It is true for the Rice fluxes with the locality condition �45�. If
the local intrinsic dissipation �44� holds, it still holds for the
movement from f�

0 to f�
* except for the range between f�

0 and f�
* in

view of Eq. �45�, i.e.,
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�f� − f�
*��̇��	0 if f�

0 	 f� 	 f�
*

�0 otherwise
� �� = 1,2, . . . ,n� �63�

or

�f� − f�
*��̇��	0 if f�

* 	 f� 	 f�
0

�0 otherwise
� �� = 1,2, . . . ,n� �64�

Globally, the range from f0 to f* constitutes a n-dimensional box
in f-space. Based on the local dissipation �63� and �64�, the global
intrinsic dissipation inequality �62� still holds outside the box and
may be violated within the box. In other words, the possible vio-
lation area is a n-dimensional box determined by f0 and f*.

It is also true to the Onsager fluxes with a convex flow poten-
tial. Evidently, the convexity of the flow potential leads to

�f − f*� · �̇ � 0 if Q�f*� � Q�f� �65�

The property requires that for a specific quasi-equilibrium point
f0
*, the corresponding possible violation area is confined by Q�f�

	Q�f0
*� and denoted by the set K0. With the monotonicity of Q

and Q�f0�=0, the possible violation area is just a finite neighbor-
hood of the equilibrium point. Thus, both the locality of intrinsic
dissipation and convexity of the flow potential provide the ther-
modynamic system a capability against the disturbance of the
thermodynamic equilibrium points.

The point of view adopted here for time-independent behavior
is that the set of plastically admissible stresses determined by
yield conditions just corresponds to the set of thermodynamic
equilibrium points. The point of view has been adopted by Eq.
�42�. Thus, the global intrinsic dissipation inequality takes the
form,

�f − f0� · �̇ � 0 ∀ f0 � K1 �66�

where K1 is determined by the yield conditions and f is on the
boundary of K1 or the yield surfaces. The convexity of the yield
surfaces is required by the inequality �66�. Evidently, the inequal-
ity �66� is just thermodynamic counterpart of the principle of
maximum plastic dissipation �see, e.g., �18,19��. This thermody-
namic basis can well explain why the principle can apply to both
hardening and softening materials, but Drucker’s inequality �20�
can only apply to hardening materials.

Ziegler �6� takes the entropy production function � as the fun-
damental potential function. Rice �4� or its extended version pre-
sented in this paper takes the flow potential function Q as the
fundamental one. In view of Eqs. �38� and �39�, the two view-
points are equivalent to each other. In this sense, the two theories
possess the same physical basis, the microscale irrotational con-
dition �20� or �21�. Various thermodynamic principles mentioned
in this paper may be stated in terms of the relationship between Q
and �. The nonlinear Onsager reciprocal relations are implied if Q
and � are related by Eq. �38�. The principle of maximum plastic
dissipation holds if Q and � possess the same monotonicity. The
linear relation between Q and �, Eq. �51�, leads to the orthogo-
nality condition. The orthogonality condition reduces to the On-
sager reciprocal relations if q=1 in Eq. �51�. The thermodynamic
restrictions on the microscale fluxes are listed according to their
generality,

f��̇� � 0 �67a�


 �̇� df� = 0 �67b�

df� d�̇� � 0 �67c�

��̇�

�f


f
 = q�̇� �67d�

These restrictions are localized to each internal variable for the
Rice fluxes. As a classifying postulate, the convexity condition,
Eq. �67c�, should possess the same status as the irrotational con-
dition and orthogonality condition. Among them, the orthogonal-
ity condition is the strictest restriction and of the least generality.

8 Concluding Remarks
Enriched by the nonlinear Onsager reciprocal relations and

thermodynamic equilibrium points, an extended normality struc-
ture is established in this paper as a unified nonlinear thermody-
namic theory of solids. It is revealed that the normality structure
stems from the microscale irrotational thermodynamic fluxes or
Onsager fluxes. The original normality structure corresponds to
the thermodynamic processes whose elementary processes are in-
dependent or uncoupled. Within the extended normality structure,
the convexity condition for the flow potential is that the conjugate
force increment cannot not oppose the increment of the rates of
local internal variables. For the Rice fluxes, the convexity condi-
tion reduces to the local rates being monotonic increasing func-
tions with respect to their conjugate forces. The convexity of the
flow potential provides the thermodynamic system a capability
against the disturbance of the thermodynamic equilibrium point.

The point of view adopted here for time-independent behavior
is that the thermodynamic counterpart of the set of plastically
admissible stresses determined by yield conditions is just the set
of thermodynamic equilibrium points. Based on the viewpoint,
Rice’s kinetic rate laws for time-independent behavior is the re-
quirement that the intrinsic dissipation inequality should hold lo-
cally. Furthermore, the global intrinsic dissipation inequality is
just thermodynamic counterpart of the principle of maximum
plastic dissipation and requires the convexity of the yield surfaces.
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On the One-Parameter Lorentzian
Spherical Motions and
Euler-Savary Formula
In this paper, we have introduced one-parameter Lorentzian spherical motion. In addition
to that, we have given the relations between the absolute, relative, and sliding velocities
of these motions. Furthermore, the relations between fixed and moving pole curves in the
Lorentzian spherical motions have also been obtained. At the end of this study, we have
expressed the Euler-Savary formula for the one-parameter Lorentzian spherical
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1 Introduction

The determination of a point or a set of points such that its
velocity norm vanishes or that is a minimum has always aroused
interest among kinematicians. The explanation of this is twofold:
points whose velocity, or acceleration, vanishes are important, for
they allow one to write simplified equations for the velocity and
acceleration of any other point of the rigid body; and a point or a
set of points with a minimum velocity norm locates the connect-
ing place of a kinematics pair, in general, a helicoidal pair, that
connects the rigid body to the reference body. This connection
produces a motion with the same characteristics, at least up to the
first derivative of the original motion of the rigid body. Indeed, the
search for points of a rigid body with a minimum velocity norm
has led to the description of the velocity of a rigid body in terms
of infinitesimal screws, or helicoidal fields, and therefore to the
definition of the instantaneous screw axis.

By taking Lorentzian plane L2 instead of Euclidean plane E2,
Ergin �1� has introduced one-parameter planar motion in Lorent-
zian plane. Furthermore, he gave the relation between the veloci-
ties, accelerations, and pole curves of these motions. In Ref. �2�,
Ikawa gave the Euler-Savary formula in Lorentzian plane L2.

In spherical kinematics, Bottema �3� found the existence of
three acceleration axes, straight lines that pass through the fixed
point, whose points do not possess acceleration. Furthermore,
Bottema found conditions that determine whether all three accel-
eration axes are real or only one is real. Later, Meyer Zur Capellen
and Dittrich �4� extended Bottema’s results by studying the accel-
eration distribution in a rigid body subjected to spherical motion.

Finally, in spatial kinematics Beyer �5� completed a thorough
analysis of the acceleration distribution in a rigid body. Moreover,
Beyer formulated a system of linear equations in a special coor-
dinate system, whose solution leads to the location of the accel-
eration center. However, Beyer did not obtain a closed-form solu-
tion even for this special coordinate system. Finally, Beyer
mentioned a previous work by Schell for the analysis of the spe-
cial cases associated with the determination of the acceleration
center.

Bottema and Roth �6� obtained the equation for the acceleration
distribution in a rigid body in a special coordinate system. By
equating the acceleration to the zero vector and solving the result-

ing system, the coordinates of the acceleration center are obtained.
The coordinate system used by Beyer �5� has some similarities
with that employed by Bottema and Roth.

Considering one and two parameters spherical motions in Eu-
clidean space, Muller �7� has given the relations for absolute,
sliding, relative velocities, and pole curves of these motions. In
addition to that, he has expressed the corresponding formula of
Euler-Savary formula related to the trajectory curves of these one-
parameter spherical motions.

To investigate the geometry of the motion of a line or a point in
the motion of space is important in the study of space kinematics
or spatial mechanisms or in physics. The geometry of such a mo-
tion of a point or a line has a number of applications in geometric
modeling and model-based manufacturing of the mechanical
products or in the design of robotic motions. These are specifically
used to generate geometric models of shell-type objects and thick
surfaces, �8–10�.

The Euler-Savary theorem is a well-known theorem that is used
in serious fields of study in engineering and mathematics.

Pennock and Sankaranarayanan presented a graphical technique
to locate the center of curvature of the path traced by a coupler
point of a planar, single-degree-of-freedom, geared seven-bar
mechanism in �11�. In this paper, the center of curvature of the
path traced by an arbitrary coupler point can be obtained from
existing techniques, such as the Euler-Savary equation. A sche-
matic drawing of this geared seven-bar mechanism is shown in
Fig. 1.

In the other work, Pennock and Raje expressed a graphical
technique to obtain the radius of curvature of the path traced by a
coupler point of a planar single-degree of freedom, indeterminate
eight-bar linkage commonly referred to as the double flier linkage.
In this study, the radius of curvature of the path traced by the
coupler point is obtained from Euler-Savary equation �12�. A sche-
matic drawing of a general geometry double flier linkage is shown
in Fig. 2.

This paper is organized as follows. In this first part, basic con-
cepts have been given in Minkowski space R1

3. In the second part,
one-parameter Lorentzian spherical motions are defined. In doing
so, the orthonormal frames of �O ;e�1 ,e�2 ,e�3� and �O ;e��1 ,e��2 ,e��3�
are taken representing moving Lorentzian sphere S1

2 and fixed

Lorentzian sphere S̄1
2, respectively. Without making any of these

privileged, we have taken another orthonormal frame
�O ;r�1 ,r�2 ,r�3�, called relative orthonormal frame, and given the
Lorentzian spherical motions with respect to this new �relative�
orthonormal frame. Furthermore, the relations between absolute,
relative, and sliding velocities of one-parameter Lorentzian
spherical motions have been obtained. In the third part, the rela-
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tions between the pole curves rolling on each other with respect to
a spherical relative system have also been given. In the last part of
this study, the Euler-Savary formula corresponding to the trajec-
tory curves is obtained. We hope that these results will contribute
to the study of space kinematics and physics applications.

2 Preliminaries
We start with preliminaries on the geometry of three-

dimensional Minkowski space. Let R1
3 be a three-dimensional

Minkowski space endowed with Lorentzian inner product g of

signature ��,�,��. A vector X� = �x1 ,x2 ,x3� of R1
3 is said to be

timelike if g�X� ,X� ��0, spacelike if g�X� ,X� ��0 and lightlike �or

null� if g�X� ,X� �=0. The set of all vector X� such that g�X� ,X� �=0 is
called the lightlike �or null� cone and is denoted by ∧. The norm

of a vector X� is defined to be �X� �=�	g�X� ,X� �	. Time orientation is

defined as follows: A timelike vector X� = �x1 ,x2 ,x3� is future point-
ing �respectively, past pointing� if and only if x1�0 �respectively,

x1�0� �13�. Let X� be a future pointing timelike unit vector and Y�

also be a future pointing timelike unit vector. If the angle between

X� and Y� is �, then we may have �13,14�

g�X� ,Y� � = − cosh �

The Lorentzian sphere and hyperbolic sphere of radius 1 in R1
3 are

given by

S1
2 = �X� = �x1,x2,x3� � 	R1

3	g�X� ,X� � = 1�

and

H0
2 = �X� = �x1,x2,x3� � 	R1

3	g�X� ,X� � = − 1�

respectively, �15�.
H0

2 consists of two connected components. The components of
H0

2 through �1,0,0� and �−1,0 ,0� are called the future-pointing
hyperbolic unit sphere and past-pointing hyperbolic unit sphere
and are denoted by H0

+2 and H0
−2, respectively.

As in the case of Euclidean three-dimensional space, the

Lorentzian cross product of X� and Y� is defined by

X� ∧ Y� = �y2x3 − y3x2,y1x3 − y3x1,y2x1 − y1x2�

where X� = �x1 ,x2 ,x3� and Y� = �y1 ,y2 ,y3� are the vectors of the
space R1

3 �16�.
The matrix

A��� = 
cosh � sinh �

sinh � cosh �
�

is called the Lorentzian rotation matrix in R1
2, where ��R �14�.

This matrix is similar to the rotation matrix, which is


cos � − sin �

sin � cos �
�

in E2

LEMMA 1. Timelike vectors are transformed to timelike vectors
and spacelike vectors are transformed to spacelike vectors by A.
That is, A conserves the orientation [13].

3 Lorentzian Spherical Motions and Their Velocities

Let S1
2 and S̄1

2 be O-centered moving and fixed Lorentzian
spheres, and related to these spheres �O ;e�1 ,e�2 ,e�3� and
�O ;e�1� ,e�2� ,e�3�� be orthonormal coordinate frames moving related to
each other, having the same center O, respectively. Let assume
that �O ;e�1 ,e�2 ,e�3� represents the moving Lorentzian sphere S1

2,
whereas �O ;e�1� ,e�2� ,e�3�� represents the fixed one �where base vec-
tors e�2 ,e�3; e�2� ,e�3� are spacelike and the vectors e�1 ,e��1 are timelike�.
Therefore,

g�e�i,e� j� = g�e�i�,e� j�� = �i�ij ,

�i = � 1, are e�i or e�i� spacelike

− 1, are e�i or e�i� timelike
 1 � i, j � 3

Adopting that none of these systems are privileged, we take an-
other relative orthonormal frame, �O ;r�1 ,r�2 ,r�3�, in consideration
and express the movement with respect to this relative one �where
base vectors r�2 ,r�3 are spacelike and the vectors r�1 is timelike�.
Therefore,

g�r�i,r� j� = �i�ij,�i = � 1, is r�i spacelike

− 1, is r�i timelike
, 1 � i, j � 3

Since each of these orthonormal frames has the same orientation,
one frame is obtained by using another when rotated about
O-point. Let A be an unique orthogonal Lorentzian matrix. That
is, At=�A−1�, where � is a sign matrix.

If we use the following abbreviations:

Fig. 1 The geared seven-bar mechanism

Fig. 2 Schematic diagram of the double-flier eight-bar linkage
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E = �e�1

e�2

e�3
�, R = �r�1

r�2

r�3
�, E� = �e�1�

e�2�

e�3�
�

we get

R = AE, R = A�E� �1�

Here, the elements of the matrix A are not only continuous but all
differentiable as well as we would like. Hence, one-parameter
motion is determined by the matrix A=A�t� and called as one-
parameter Lorentzian spherical motion D1.

Now, let us calculate the differentials of vectors r� j with respect

to S1
2 and S̄1

2, respectively. If we consider Eq. �1�, then differential
of the relative orthonormal coordinate frame R with respect to S1

2

and S̄1
2 are

dR = dAA−1R, d�R = dA��A��−1R �2�

By choosing dAA−1=	 and dA��A��−1=	�, Eq. �2� can be rewrit-
ten as follows:

dR = 	R, d�R = 	�R �3�

We can easily see that both 	 and 	� matrices are anti-
symmetric in the sense of Lorentzian, i.e., 	t=−�	� where 	t is
the transpose matrix of 	 and � is sign matrix. Let assume that

ij�1� i , j�3� are the elements of 	 matrix. Let us denote the
permutations of the indices i , j ,k=1,2 ,3 ;2 ,3 ,1 ;3 ,1 ,2, by 
ij
=
k. Then, we can easily get that

	 = � 0 
3 − 
2


3 0 − 
1

− 
2 
1 0
� �4�

In the similar way, anti-symmetric matrix 	� in the sense of
Lorentzian is obtained to be

	� = � 0 
3� − 
2�


3� 0 − 
1�

− 
2� 
1� 0
� �5�

Let

X� = �x1

x2

x3
�

be a point in the relative frame and configure the following vector:

OX� = X� = XtR �6�

If the point X is a point on the unit Lorentzian sphere, then we
have

�X� �2 = − x1
2 + x2

2 + x3
2 = 1

Now, we compute the differentials of X with respect to Lorent-

zian spheres S1
2 �moving� and S̄1

2 �fixed�. First of all, we evaluate
the differentiation of X with respect to moving Lorentzian sphere
S1

2. If we consider Eq. �6�, we obtain

dX� = dXtR + XtdR

Substituting Eq. �3� in the above equation, we have

dX� = �dXt + Xt	�R �7�

Therefore, relative velocity of X �i.e., velocity of X with respect to

Lorentzian sphere S1
2� is V� r=dX� /dt. If V� r=0, i.e., dX� =0, then the

point X is fixed in the moving Lorentzian sphere S1
2. Thus, from

Eq. �7�, the condition that the point X is fixed in S1
2 is given by

dXt = − Xt	 �8�

Similarly, from Eq. �3�, the differential of X with respect to fixed

Lorentzian sphere S̄1
2 is

d�X� = �dXt + Xt	��R �9�

So, absolute velocity vector �the velocity of the point X with re-

spect to fixed Lorentzian sphere S̄1
2� is V� a=d�X� /dt. If V� a=0, i.e.,

d�X� =0, the point X is fixed in the fixed Lorentzian sphere S̄1
2.

Hence, the condition that the point X is fixed in S̄1
2 is given by

dXt = − Xt	� �10�

If the point X is fixed in moving Lorentzian sphere S1
2 then the

velocity of X with respect to S̄1
2 is called sliding velocity of X and

denoted by V� f. If Eq. �8� is substituted in �9�, we get

V� f = Xt�R �11�

where �=	�−	.

If the Pfaffian vector �� is taken to be

�� = − �1r�1 + �2r�2 + �3r�3, �i = 
i� − 
i, 1 � i � 3 �12�

then we get

V� f = �� ∧ X� �13�

Taking Eqs. �7� and �9� into account, we can easily get

V� f = d�X� − dX�

From the above equation, we may write

V� a = V� r + V� f

Therefore, we give the following theorem.
THEOREM 2. In a one-parameter Lorentzian spherical motion,

absolute velocity vector of a point X is the sum of relative velocity
vector and sliding velocity vector of it.

Now, to understand the meaning of the Pfaffian vector �� and
Eq. �14�, we emphasize the importance of Darboux rotation vec-
tor.

Let us consider a rotational motion about an axis. Assume that

this axis passes through the origin and its direction be d� . We also
assume that the angular velocity of this rotational motion is 


= � �d��.
Let apply this rotation motion to the point X with the position

vector of OX� =X� and let us define velocity vector v� of this point X
as follows �see Fig. 3�:

Fig. 3 Velocity vector v� of point X
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v� = d� ∧ X�

The last equation implies that the vector v� is orthogonal to both X�

and d� . If the angle between d� and X� is denoted by  and the

distance of X� from the rotation axis by r, then we can write, �13�.

�v�� = �d���X� �sinh  = � 
r

It is very clear from this equation that v� is the velocity vector of

the point X on the rotation about the axis d� with the angular

velocity of ��d��. Therefore, we call �� Pfaffian vector as rotation
vector of one-parameter Lorentzian spherical motion D1 at the
time t. Thus, we give the following theorem.

THEOREM 3. In one-parameter Lorentzian spherical motion D1
at the time t, for every point X there exists an infinitesimal rota-
tional motion. In this rotational motion, Pfaffian vector plays the
role of Darboux rotation vector.

Now we add an unit vector of p� , which is in the direction of the

rotation vector �� . Since we have

�p�� = 1

then we write

�� = p��− �1
2 + �2

2 + �3
2

where �= � ��� �=�−�1
2+�2

2+�3
2 demonstrates the infinitesimal

rotational angle, which produces the rotation in the time interval
dt �the sign of � depend on the direction of p��. The point P

shown on the Lorentzian sphere �OP�= p�� is an instantaneous ro-
tation pole. As the point P is characterized by that the sliding
velocity is equal to zero, according to Eq. �13� if

�� ∧ X� = 0, �X� �2 = 1

then

X� = � p�

THEOREM 4. In a one-parameter Lorentzian spherical motion
for any time t, there exists a couple of points P, P� for each of
which the sliding velocities are zero, where P is the rotational

pole S1
2 and P� is the rotational pole S̄1

2. Those points remain
stable on both Lorentzian spheres at any time.

THEOREM 5. Every point of moving Lorentzian sphere S1
2 make a

rotational motion (an instantaneous rotational motion) with angu-
lar velocity � :dt about the pole P (and its P� point) at every time
t. Therefore, one-parameter Lorentzian spherical motion is such a
rotational motion of Lorentzian sphere S1

2 with respect to fixed

Lorentzian sphere S̄1
2 at a time t.

4 Canonical Relative Frames and Rolling of the Pole
Curves on Each Others

Now, let us choose a special relative frame that satisfies the
following:

p� = r�3 �14�

If we take p� =r�3, then the vector p� becomes orthogonal to r�1 and

r�2. Therefore, since �� = p��−�1
2+�2

2+�3
2, from the Eq. �12� we

see that �1=0, �2=0. Since we have �=	�−	, if we consider
Eqs. �4� and �5� we reach 
1�=
1, 
2�=
2. Thus, infinitesimal
rotation angle of instantaneous rotation appears to be

� = �3

In this case, instantaneous rotation axis is expressed as follows:

�� = r�3�3 = r�3�
3� − 
3�

From this point on, we assume that �3�0. We have not given the
single meaning of relative frame by using Eq. �14� because the
frame obtained from the condition of p� =r�3 can be rotated arbi-
trarily about the r�3-axis. Therefore, rotating the frames about p�
=r�3-axis by an angle of � gives us �see Fig. 4�

R* = A���R �15�

where

R* = �r�1
*

r�2
*

r�3
* �, R = �r�1

r�2

r�3
� and A��� = �cosh � sinh � 0

sinh � cosh � 0

0 0 1
�

This new orthonormal frame �O ;r�1
* ,r�2

* ,r�3
*� has the following

differential equations, corresponding to Eq. �3�

dR* = 	*R*, d�R* = 	�*R* �16�

Now we see the how we can obtain 
*’s from 
’s, i.e., we discuss
the relationship between 
’s and 
*’s when the frame rotates by
the angle of �.

If we take into account Eq. �15�, we can write

dR* = dA���R + A���dR

Substituting Eq. �3� in the along equation, we obtain

dR* = �dA��� + A���	�R �17�

and using Eqs. �15� and �16� we have the following:

	*A��� = dA��� + A���	 �18�

If we write Eq. �18� in matrix form we can easily see that


1
* = 
1 cosh � + 
2 sinh �


2
* = 
1 sinh � + 
2 cosh �


3
* = 
3 + d�

Thus, in this type of rotation of the frame, Pfaffian forms trans-
form as unit vectors r�1 and r�2.

Now, to normalize the relative system we choose the rotation
angle � in such that


1
* = 
1 cosh � + 
2 sinh � = 0 �19�

Eq. �19� is a conditional equation for the rotation angle �. At this
point, we suppose that the relative frame is rotated about r�3 by the
angle �, which satisfies Eq. �19� and omit the asterisk. Thus, we
can rewrite the Eqs. �16� and �19� for the canonical relative frame
as follows. Differentiation with respect to S1

2 is

Fig. 4 Rotation about the axis p� =r�3 by an angle of �
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�dr�1

dr�2

dr�3
� = � 0 
3 − 
2


3 0 0

− 
2 0 0
��r�1

r�2

r�3
� �20�

and the differentiation with respect to S̄1
2 is

�d�r�1

d�r�2

d�r�3
� = � 0 
3� − 
2�


3� 0 0

− 
2� 0 0
��r�1

r�2

r�3
� �21�

p� =r�3 vector draws a curve �P� on the moving sphere S1
2, we call

this curve as moving pole curve centrode of one-parameter
Lorentzian movement D1. From Eq. �20�, we have the following:

dr�3


2
=

dr�3

ds
= − r�1

This alone equation tells us that the unit tangential vector of mov-
ing pole curve �P� is �−r�1� and 
2=ds is the arc element of �P�.

In the same manner, the end point of the vector p� =r�3 draws a

constant pole curve �P�� on the sphere S̄1
2. On this curve unit

tangential vector at the point P is �−r�1� and arc element is 
2
=ds� �here we took Eq. �21� into account�. Thus, we can give the
following theorems.

THEOREM 6. Velocity vectors of the rotating pole �P� are the
same at any time when the pole on the moving and constant
sphere draw pole curves �P� and �P��, respectively.

THEOREM 7. In a one-parameter spherical Lorentzian movement
D1, spherical moving pole curve �P� of S1

2 rolls on constant pole

curve �P�� of S̄1
2 with no slide.

THEOREM 8. In the reverse movement of one-parameter spheri-

cal rotation motion, the spherical surfaces of S1
2, S̄1

2 and spherical
pole curve �P� and �P�� changes their roles.

5 Corresponding Euler-Savary Formula for Trajec-
tory Curves

Let point X be given on a moving Lorentzian sphere S1
2. This

point draws a trajectory on fixed Lorentzian sphere S̄1
2 during the

movement of one-parameter D1 Lorentzian rotation motion. Now
we search for the spherical curvature centre X� of this trajectory.
Let rotation motion be given with respect to canonical relative
system obeying Eq. �20�. Therefore, rotation motion in time t
might be thought as a small rotation of S1

2 �moving� with respect

to S̄1
2 �fixed� with a small rotation angle of �=�3=
3�−
3 about

the rotation pole P given by OP� = p� =r�3. For the arc element drawn

by the point X on S̄1
2 during D1 motion, we can write the following

�see Fig. 5�:

ds = � = � sinh � �22�

The trajectory of point X on S̄1
2 forms a surface strip or a cur-

vature strip on fixed Lorentzian sphere S̄1
2. Let us define an or-

thogonal frame on this trajectory of point X as follows:

i. The normal vector of surface �which is normal to the sur-

face of sphere� is given by position vector OX� =x�
ii. Unit vector t� is superseded with the tangent of trajectory

of point X
iii. Thus, unit normal vector lying inside the strip plane is

n� = x� ∧ t�

In this case, differential equations of orthogonal frame �x� , t�,n��
are as follows:

dt� = − x�� + n��

dn� = t��

dx� = − t�� �23�

Here, arc element of the trajectory of point X is �=ds and
geodesic curvature element is �=cds. The vectors x� and n� define
the normal plane of the curve. This plane cuts the sphere along the
trajectory normal �see Fig. 6�. Thus, rotation pole P and spherical
curvature centre X� of trajectory lie on this big circle. Therefore,

vectors OP� = p� and OX�� =x�� can be given as follows �see Fig. 6�:

p� = x� cosh � + n� sinh � �24�

x�� = x� cosh � + n� sinh � �25�

Here the spherical distance from rotation pole P to point X is �
and the spherical distance from rotation pole P to point X� is ��
=�−�. Since the spherical distance of points X and X� is �, �
=�−�� is called as spherical curvature radius of trajectory and
henceforth, by considering Eqs. �22� and �23�, we write

dp� = dx� cosh � + x� sinh �d� + dn� sinh � + n� cosh �d�

= − t�� cosh � + x� sinh �d� + t�� sinh � + n� cosh �d�

= t��� sinh � − � cosh �� + �n� cosh � + x� sinh ��d� �26�

In Eq. �26� we substitute � into � to find

Fig. 5 Distance of point X to rotation pole P

Fig. 6 Normal plane defined by vectors x� and n�
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dx�� = t��� sinh � − � cosh �� + �n� cosh � + x� sinh ��d�

This vector shows the propagation direction of the geometric po-
sition of curvature centres, i.e., spherical evolution. That is,

g�t�,dx�� � = � cosh � − � sinh � = 0

If we put the value of � from Eq. �22�, we reach

− � sinh � + � sinh � cosh � = 0 �27�
If we do scalar product for the both sides of Eq. �26� from the
both sides, we write

g�t�,dp�� = � cosh � − � sinh �

and using Eq. �22�, we reach

g�t�,dp�� = � sinh � cosh � − � sinh � �28�

Now we want to eliminate magnitude � from the Eqs. �27� and
�28�. The value of � evaluated from Eq. �27� is

� = �
sinh � cosh �

sinh �

Substituting this value into Eq. �28� and then rearranging gives us

g�t�,dp�� = � sinh ��cosh � −
sinh � cosh �

sinh �
�

= � sinh �� sinh � cosh � − sinh � cosh �

sinh �
�

= � sinh �
sinh�� − ��

sinh �

= �
sinh � sinh�� − ��
sinh��− � + �� − ��

=
�

coth � − coth ��

where we adopt that ��=�−�. Now, if we denote t�p as the com-
mon tangential unit vector of pole curves �P� and �P�� and �p

=dsp as the common arc element then

dp� = t�p�p

and

g�t�,t�p��coth � − coth ��� =
�

�p

Furthermore, as

g�t�,t�p� = − sinh 

we find the corresponding Eular-Savary formula as

�coth �� − coth ��sinh  =
�

�p
�29�

For all mutual point couples X, X� we give a meaning for � /�p,
which is the left-hand side of Eq. �29�. For this aim, we consider
the spherical curvature centers M and M� of curves �P� and �P��.
That is, the centers M and M� have spherical distances �p and �p�
that we call them as spherical curve radius of pole curves from

rotation pole P, respectively. Let us take M be a point of S1
2. In

this case, the curvature center of M in the movement D1 will be
M�. This can be seen by taking the curvature circle in time t for
the pole curves �P� and �P��. Therefore, curvature circle of �P�,
for which the spherical center is M, rotates on the curvature center
of �P�� for which the spherical centre is again M. In this rotation
point, M draws a circle centered at M�. Thus, if we accept

� = �p, �� = �p�, sinh  = 1

in Eq. �29�, then we obtain

coth �p� − coth �p =
�

�p
�30�

where �p and �p� are the spherical curvature centres for the pole
curves �P� and �P��, respectively.

THEOREM 9. In a one-parameter movement D1 of Lorentz

spherical S1
2 with respect to the Lorentz spherical S̄1

2, a fixed point
X in S1

2 draws a trajectory for which its instantaneous curvature

center is X� in the Lorentz sphere S̄1
2. In this case, we can say the

following for the contradictory movement of Lorentz sphere S̄1
2

with respect to Lorentz sphere S1
2. The point X�, which is fixed in

S̄1
2, draws a trajectory in S1

2 for which the curvature centre is the
initial point X. Mutual interrelation between the points X and X�
is given by the Euler-Savary formula.
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Computational Examination of the
Effect of Material Inhomogeneity
on the Necking of Stent Struts
Under Tensile Loading
This study presents a computational investigation of tensile behavior and, in particular,
necking due to material inhomogeniety of cardiovascular stent struts under conditions of
tensile loading. Polycrystalline strut microstructures are modelled using crystal plasticity
theory. Two different idealized morphologies are considered for three-dimensional mod-
els, with cylindrical grains and with rhombic-dodecahedron grains. Results are compared
to two-dimensional models with hexagonal grains. For all cases, it is found that necking
initiates at a significantly higher strain than that at UTS (ultimate tensile stress). Two-
dimensional models are shown to exhibit an unrealistically high dependence of necking
strain on randomly generated grain orientations. Three-dimensional models with cylin-
drical grains yield a significantly higher necking strain than models with rhombic-
dodecahedron grains. It is shown that necking is characterized by a dramatic increase in
stress triaxiality at the center of the neck. Finally, the ratios of UTS to necking stress
computed in this study are found to compare well to values predicted by existing bifur-
cation models. �DOI: 10.1115/1.2722776�

Introduction
Coronary stents are tubular metal �typically, 316L stainless

steel� scaffold devices used in the treatment of heart disease. They
are inserted into the coronary arteries in the heart as part of the
angioplasty procedure, where arterial blockages are removed, and
they remain as permanent implants for the purpose of keeping the
artery open and maintaining adequate blood flow to the heart
muscle. Stent structures are generated using repeating patterns of
thin interconnected metal struts. For coronary applications, the
struts are typically �100 �m in thickness. Stents are deployed
into position in the artery by expansion using a balloon catheter.
The balloon expansion results in significant plastic deformation in
the stent, ensuring that it retains a permanently expanded state.
The success of these micron-scale coronary stents has fueled in-
terest in developing smaller stents for peripheral and neurovascu-
lar applications. However, for smaller stents to be designed cor-
rectly, the mechanical properties of the micron-sized struts must
be understood thoroughly.

A body of work now exists in the literature on modeling the
mechanical performance of stents �e.g. �1–5��. Such work includes
the prediction of mechanical performance measures, such as re-
quired expansion pressures, bending flexibility, and elastic recoil
on balloon deflation. Many different stent designs have been com-
pared, and relative performance assessments have been made.
However, in the bulk of the work published to date, the material
has been represented using conventional isotropic elasticity-J2
flow theory plasticity, using standard macroscopic values for ma-
terial properties, and no consideration has been given to the fact
that the size scale of the stent microstructure is significant com-

pared to the strut size scale ��100 �m� as illustrated in Fig. 1.
Only in the study of McGarry et al. �6� has the effect of micro-
structural features on stent deployment been investigated.

An experimental study by Murphy et al. �7� investigated the
dependence of the tensile failure strain of 316L stainless-steel
stent struts on strut thickness. A computational micromechanics
study by Savage et al. �8� using 2D �two-dimensional� crystal
plasticity models further investigated this size effect, and it was
shown that localization of strains occurs more easily in thinner
struts where there are few grains across the thickness, leading to
early shear banding and macroscopic softening, whereas in a thick
strut constraint from surrounding grains delays shear banding and
macroscopic softening. However, these studies suffer from two
drawbacks. First, material failure was assumed to coincide with
UTS �ultimate tensile strength�. It has been established that neck-
ing only occurs at UTS for very long thin strips. For shorter stub-
bier samples a considerable delay occurs between UTS and neck-
ing �8�. Second, the use of 2D crystal plasticity models represents
a gross underestimation of the number of grains and associated
plastic slip orientations in a sample.

In the current paper, these issues are addressed, focusing on the
development on 3D �three-dimensional� crystal plasticity models
of stent struts. Because of very large numerical problem sizes that
such models generate, attention is focused on a single strut thick-
ness, viz 75 �m. Two different grain morphology and packing
configurations are considered. The study has significant value in
that this is the first time that 3D micromechanical modeling of this
type has been applied to stent struts. The fact that stent struts are
so thin is highly fortuitous from the micromechanical modeling
point of view because one can reasonably aspire to develop a
representative model of a complete segment of the stent device, in
this case a strut. This is significant when one contrasts it with a
typical situation where micromechanical modeling has been used,
for example, in the study of the mechanical performance of metal-
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Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received November 9, 2005; final manu-
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matrix composites �e.g. �9,10��, where one can only reasonably
aspire to develop a model of a small volume element of the ma-
terial, and where major assumptions must be made to relate the
microscale model predictions to the overall macroscale perfor-
mance of the material or a component made from the material.

In the present work, the predictions of the 3D models in terms
of microscale deformation and macroscale stress-strain behavior
in tensile loading are examined and compared to 2D model pre-
dictions. 316L single-crystal material properties are taken from
Okamoto et al. �11�. Although the study of Hoc et al. �12�, using
crystal plasticity and a single layer of grains, considers localisa-
tion at UTS, the current study represents the first attempt to ex-
amine the phenomenon of necking due to crystallographic orien-
tation inhomogeneity in 3D microstructures. Such 3D finite
element models of polycrystalline materials, using various ver-
sions of crystal plasticity theory, have recently appeared in the
literature, �e.g., �13–15��, but such computationally demanding
modeling techniques have not previously extended to study of
necking. Of particular interest is the strain at which necking oc-
curs. It has long been established due to the formulations of Cow-
per and Onat �16�, Hutchinson and Miles �17�, Hill and Hutchin-
son �18� and Miles �19� that bifurcation from a uniform stress
state occurs post UTS �ultimate tensile strength�. Strains and
stresses at necking computed in this study are compared to the
bifurcation stresses and strains predicted by the formulations of
Miles �19� for specimens with rectangular cross sections.

It has been widely reported that triaxiality in a specimen under
tensile loading is constant only until the onset of necking �20–22�
with the maximum triaxiality occurring at the middle of the
necked cross section �23–25�. In this work, the stress state in the
vicinity of the necked region of 3D simulations is investigated.

Theory and Numerics
The simulations performed in this work are based on large

strain �finite deformation� kinematics and incorporate an elastic-
plastic constitutive description of the material. The ABAQUS®
finite element code �26� is used for the simulations and the Pat-
ran® code is used for finite element mesh generation. The user
material subroutine �UMAT� of Huang �27� is used to implement
the constitutive behavior. Elasticity is considered as being linear
in terms of finite deformation quantities. Plasticity is described
using crystal plasticity theory, which attempts to represent the
flow of dislocations along slip systems in metallic crystals in
terms of continuum plastic shear strains. In particular, the rate-
dependent single-crystal formulation of the theory of Pierce et al.
�28� is used. Details of numerical implementation are given in

�27�, and described in detail in �29�. A brief overview of aspects of
the theory, which are most relevant for the application of interest
here, is given below.

In crystal plasticity theory, plastic slip is assumed to obey
Schmidt’s law, where the rate of plastic shear strain in the direc-
tion of a particular slip system �, �̇�, is assumed to depend on the
Schmidt resolved shear stress for that slip system �on the slip
plane, in the direction of the slip system�, ��. In this work, the
following power-law rate-dependent relationship is used:

�̇� = ȧ sgn������ ��

g�
��n

�1�

where ȧ and n are the reference strain rate and rate sensitivity
exponent, respectively. Material strain hardening is specified by
the slip system strain hardness g�. This, in turn, is given by the
path-dependent integration of the following evolution equation:

ġ� = �
�=1

N

h��	�̇�	

g� = g0, t = 0 �2�
where the summation is performed over all slip systems active at
a material point �� :1→N�. The matrix of hardening moduli h�� is
given by

h�� = hq�� �3�

where q�� is a matrix representing the relationship between self
and latent hardening in the crystal and h is given by the derivative
of the hardening function g with respect to the accumulated slip
�a, defined as

�a =

0

t

�
�=1

N

	�̇�	dt �4�

The following form of the strain hardness function g �28� is used,
which is known to accurately capture the shear stress-shear strain
behavior of metallic crystals:

g��a� = g0 + �g� − g0�h0 tanh� h0�a

g� − g0
� �5�

This function involves three material strain-hardening constants,
g0, g�, and h0, that must be determined by fitting to experimental
tensile stress-strain data. The accumulated slip is a measure of the
total crystallographic plastic strain at a material point in the crys-
tal. Taylor isotropic hardening was assumed, meaning that self and
latent hardening rates were assumed to be the same, and in this
context q�� was a fully populated matrix of “1”s.

A rate-dependent formulation of the theory is used here due to
the fact that this removes nonuniqueness of solution problems
often associated with rate-independent crystal plasticity formula-
tions �28� and also produces good numerical stability. The user-
defined material subroutine �UMAT� in which the theory was
originally implemented �27� is modified for the current study to
automatically control the global time step size, to ensure both
accuracy and efficiency of solution.

Material Properties
316L stainless steel has an face-centered-cubic �fcc� crystal

structure implying 12 slip systems in three dimensions. Elasticity
is assumed to be isotropic and standard published values are used:
Young’s modulus, E=209 GPa and Poisson’s ratio, �=0.28. It was
shown in Savage that changing from isotropic elasticity to aniso-
tropic cubic elasticity in polycrystalline stent strut models had a
negligible effect on the overall predicted material behavior. With
regard to plasticity, experimentally measured tensile stress-strain
curves for 316L single crystals were found in the literature �11�
and these data were used to calibrate the strain hardness function

Fig. 1 SEM image of a 316L laser-cut strut, representative of
that used in stents
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for the crystal �Eq. �5��. The resulting values of the strain-
hardening constants are g0=50 MPa, g�=330 MPa and h0
=225 MPa. The rate dependence of stainless steel at room tem-
perature has been widely reported in the literature �30–33�. A rate
exponent �n� of 20 is assumed for the current study because such
a value not only reflects such experimentally observed rate depen-
dence but also ensures robust convergence of the solution. A ref-
erence strain rate �ȧ� of 0.001 s−1 is also assumed and models are
subjected to an applied nominal strain rate of this value for all
simulations.

Model Development
Two 3D models were generated. In both cases, a straight seg-

ment of stent strut is modeled using assemblages of grains, and in
both cases the microstructure is assumed to be ideal, meaning that
regular idealized grain morphologies are used.

3D Cylindrical Grains Model. The generation of this model
can be best understood by first considering a 2D idealization of
the microstructure. In the plane, the microstructure is represented
as an assemblage of hexagons, as illustrated in Fig. 2�a�, all regu-
lar except for the partial hexagons at the boundaries. To generate
a 3D microstructure, one can imagine “extruding” the hexagons in
the out-of-plane direction, a distance equal to the width of the
strut, to generate hexagonal cylinders. Individual grains can then
be generated by cutting the cylinders at regular intervals along
their lengths, as illustrated in Fig. 2�b�. Image analysis in �8� of
micrographs of the stent struts tested in �7� revealed an average
grain area of 92 �m2. Based on this the size of the in-plane hexa-
gons was set at 92 �m2 in the model. Assuming a strut thickness
of 75 �m, this translates into approximately nine grains across the
thickness �seven full grains and two partial grains�. The stent

struts tested in �7� had an out-of-plane width of �85 �m and a
width of this order is used in the model �the exact dimension is
83.3 �m�. Reflecting the number of grains through the thickness,
the hexagonal cylinders are divided into nine equally sized grains
in their axial direction. A length-to-thickness aspect ratio of 3.32:1
is used �8�, and this results in a model length of 249 �m. The final
model has 1980 grains. The model was meshed using eight-noded
brick elements with reduced integration and hourglass control.
Attempting to ensure a reasonable number of elements per grain
for accuracy results in a model with 134,784 elements. Tensile
stretching is simulated by constraining the left-hand end of the
model in the axial direction and by applying a uniform axial dis-
placement to the right-hand end. Rigid-body motion is prevented
by applying appropriate constraints at the left-hand end. The full
mesh is shown in Fig. 2�c�. Random lattice orientations in 3D
were assigned to the grains and runs were performed for three
random orientation sets.

3D Close Packed Model. A second 3D model was generated
based on a desire to have an internal structure that would have
greater physically realism than the cylindrical grains model dis-
cussed above. The morphology selected is based on an assem-
blage of rhombic dodecahedrons; this assemblage represents a
close packing of space, in the same sense as close-packed arrange-
ment of spheres. Indeed, if one considered a close-packed ar-
rangement of spheres and if one “straightened out” the surfaces of
the spheres, so as to fill the gaps between the spheres, the spheres
would become rhombic dodecahedrons. To represent the strut, the
model is structured to have the same overall dimensions as for the
cylindrical grains model �75 �m	83.3 �m	249 �m�. A single
rhombic-dodecahedron grain is shown in Fig. 3�a�. To generate
the strut model, full rhombic-dodecahedron grains are arranged as
shown in Fig. 3�b�. Partial grains are then added at the sides and
edges to generate smooth surfaces and straight edges in the model.
The final model consists of a total of 1875 grains �full plus par-

Fig. 2 „a… 2D hexagonal grain finite element model with a typi-
cal hexagonal grain highlighted. 3D cylindrical grains finite el-
ement model: „b… break-out view with a typical grain high-
lighted and „c… full finite element mesh. The dimensions
“width” and “thickness” discussed in the text are shown.

Fig. 3 3D close-packed rhombic-dodecahedron model: „a… one
rhombic-dodecahedron grain, „b… arrangement of full rhombic-
dodecahedron grains in the model „partial grains at surfaces
and edges not shown…, and „c… full finite element mesh. The
dimensions “width” and “thickness” discussed in the text are
shown.
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tial�. To facilitate meshing the 12-sided rhombic-dodecahedron
grains, tetrahedral elements are used, in particular, 10-noded tet-
rahedrons with reduced integration. Attempting to ensure a rea-
sonable number of elements per grain for accuracy results in a
model with 129,600 elements. The model is constrained and
loaded in exactly the same way as for the cylindrical grains
model. The full mesh is shown in Fig. 3�c�. Random lattice ori-
entations in 3D were assigned to the grains and runs were per-
formed for three random orientation sets.

2D Model. The validity of the simplification of a generalized
plane strain assumption used in �6,8� is examined by comparison
of the aforementioned 3D models to a 2D generalized plane strain
model with a similar number of grains through the stent thickness
and an out of plane depth of 0.85 �m. A typical mesh comprising
of 220 grains and 3744 elements is shown in Fig. 2�a�. Both

four-noded �first-order� and eight-noded �second-order� quadrilat-
eral elements are used and a dense mesh consisting of 10,605
elements is also considered. In the ABAQUS® implementation,
generalized plane strain is achieved by integration across the
plane to yield net-zero out-of-plane forces.

It is worth noting that one could view the models as represent-
ing an evolution toward physical realism. For the 2D model, the
grains are implicitly cylinders of arbitrary length in the out-of-
plane direction. The cylindrical grains model is an evolution of
this in that the cylinders are given a definite length �the width of
the strut� and are subdivided to generate grains, with the number
of grains determined from experimental data. Although the result
is that this model is physically reasonable in terms of numbers of
grains, etc., it has an unphysical bias in that its structure in the
thickness direction is different from that in the width direction.
The final model, the close-packed model, eliminates this bias. For
all three model types, axial stretching is applied at a very low
nominal strain rate �equal to ȧ� to eliminate any spurious rate-
sensitivity effects that might arise from the use of a rate-
dependent material model.

In this work, the microscopic mechanical performance of the
models is inferred from comparison of deformed meshes and con-
tour plots of von Mises stress. Although the von Mises stress has
no theoretical significance in crystal plasticity formulations, it is a
stress invariant that reflects the level of computed plastic defor-
mation. The macroscopic performance of the models is quantified
in terms of macroscopic engineering stress-nominal strain �s-e�
curves. The effect of grain configuration and grain orientations on
yield, hardening behavior, and UTS is examined, with the effect
of element type and mesh density being considered, in addition,
for 2D models. Material failure is then considered, with the onset
of necking being determined by examination of the evolution of
cross-sectional areas throughout the strut length. The stress state

Fig. 4 Plots of deformed meshes for two different sets of crys-
tal orientations at a strain of 0.95

Fig. 5 Stress-strain curves for 2D models using a coarse
mesh with first-order elements „broken gray curves…, a fine
mesh with second-order elements „solid black curves…, and a
fine mesh with first-order elements „solid gray curve…: „a… full
stress-strain curves and „b… stress-strain relationships at UTS

Fig. 6 Contour plots of von Mises stress at a strain of 0.5 for
„a… a fine mesh with second-order elements and „b… a coarse
mesh with first-order elements
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in the necking region is also examined. Finally, the computed
failure strains are compared to values predicted by the bifurcation
modeling of Miles �19�.

Results
Figures 4�a� and 4�b� show plots of deformed 2D meshes at a

macroscopic nominal strain of 95% for two different sets of ran-
dom crystal orientations. Clearly, the location of the development
of shear bands and necking is highly dependent on the randomly
assigned crystal orientations. From Fig. 5�a� is apparent that the
random orientations also affect the UTS of the strut. Indeed, at a
nominal strain of 0.1, a difference in engineering stress of 10 MPa
�over 3%� is computed for two different sets of crystal orienta-
tions. At a nominal strain of 0.5, this difference increases to
20 MPa �4% difference�. In terms of the strain at UTS, a maxi-
mum difference of 0.03 is computed.

The effect of element type and mesh density on the computed
UTS is shown in Fig. 5�b�. A difference in strain at UTS of 0.013
is computed between a dense mesh comprising of second-order
elements and a coarse mesh comprising first-order elements for all
orientations. A corresponding UTS difference of 4.3 MPa is com-
puted for all orientation sets. Such differences can be explained by
the higher levels of stress localizations computed using a dense
mesh with second-order elements. Contour plots of von Mises
stress at a nominal strain of 0.5 are shown for the dense mesh with
second-order elements in Fig. 6�a� and for the coarse mesh with
first-order elements in Fig. 6�b� for the same set of crystal orien-
tations. In the former, a peak value of 1606 MPa is computed

compared to 1516 MPa in the latter. The use of a dense mesh with
first-order elements is found to produce s-e curves closer to those
computed using second-order elements �Fig. 5�b��. A peak von
Mises stress of 1576 MPa is computed for the first-order dense
mesh, which is quite close to the peak value shown in Fig. 6�a�.

Figures 7�a� and 7�b� show plots of deformed meshes for the
cylindrical crystal model and the rhombic-dodecahedron crystal
model, respectively, at a macroscopic strain of 0.95. Necking is
significantly more progressed in the latter case. Figures 7�c� and
7�d� show the deformed mesh for the rhombic-dodecahedron crys-
tal model computed using two additional sets of crystal orienta-
tions demonstrating the effect of crystal orientations on the loca-
tion of shear band formation and necking. A similar dependence is
observed for cylindrical grains, again with necking being less pro-
nounced for all crystal orientation sets than is the case for
rhombic-dodecahedron grains at the same strain.

Figure 8 shows that struts comprised of cylindrical grains yield
s-e curves that are relatively insensitive to crystal orientations
until the development of necking. The same could be said of struts
comprised of rhombic-dodecahedron grains up to a strain of 0.2.
Indeed, the hardening behavior of both configurations is identical
up to this point, after which the hardening rate of the rhombic-
dodecahedron crystal configuration reduces and UTS values rang-
ing from 481 MPa to 488 MPa at strains ranging from 0.56 to
0.57 are computed. The UTS for the cylindrical crystal configu-
ration is 508 MPa in all cases at a strain of 0.64. Figure 9 reveals
a lower level of stress localization in the case of the cylindrical

Fig. 7 Deformed mesh at a strain of 0.95 for „a… the cylindrical grain configuration, „b…–„d… the rhombic-dodecahedron
crystal configuration with three different sets of random crystal orientations
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crystal configuration than is the case for rhombic-dodecahedron
crystal configuration at a strain of 0.5 �prior to UTS�.

Turning attention again to the 2D simulations, it is apparent
from Fig. 8 that the initial hardening rate is much higher than that
computed using the 3D meshes. The random crystal orientations
also have a much greater effect, with UTS values ranging from
494 MPa to 513 MPa. Strains at UTS range from 0.47 to 0.53,
which is lower than all corresponding values computed using 3D
analyses.

The onset of necking can be determined by considering the
evolution of cross-sectional areas at ten locations evenly distrib-
uted throughout the strut length, as shown in Fig. 10�a�. Cross-
sectional area evolution for the 3D analysis using rhombic-
dodecahedron grains shown in Fig. 7�d� is presented in Fig. 10�b�.
Details of significant stresses and strains for this simulation are
given on the seventh row of Table 1 �3D rhom ori1�. In Fig. 10�a�,
a point of inflection is observed for section 8 at a nominal strain of
0.74, leading to a dramatic reduction in cross-sectional area, as
depicted in Fig. 7�d�. All other sections exhibit a reduction in the
rate of area decrease following this point with elastic unloading
eventually occurring. This localization of the deformation to the
vicinity of section 8 is a clear indication of necking. A similar
pattern is revealed for the 2D analyses corresponding to the first
row of Table 1 �2D hex ori1� as shown in Fig. 10�c�. The onset of
necking occurs at a nominal strain of 0.6 between sections 7 and
8. The localization of the neck can be observed with the elastic
unloading of sections 7 and 8, initiating much later than all other
sections outside the necking region. Figure 10�d� shows a com-
parison of neck cross-sectional areas for 3D analyses using
rhombic-dodecahedron and cylindrical grains. The point of inflec-
tion, marking the onset of a dramatic reduction in cross-sectional

area, occurs at a much higher strain for the latter case. As can be
seen in Table 1, the ratio of necking strain to strain at UTS is
much higher for all analyses using cylindrical grains. This indi-
cates that the necking strain is much more dependent on grain
structure than is the strain at UTS and that strain at UTS is an
unreliable indicator of necking.

True-stress–true-strain curves in Fig. 11�a� are constructed us-
ing the cross-sectional areas plotted in Fig. 10�c� for 3D analyses
with cylindrical and rhombic-dodecahedron grains. As would be
expected, the points of inflection occur at true strains correspond-
ing to the nominal strains identified at the onset of necking in Fig.
10�c�. As can be seen from Table 1, the ratios of true stress at
necking to true stress at UTS are less sensitive to grain type than
are the corresponding true strain ratios.

For the case of the rhombic-dodecahedron grain analysis a true
stress-nominal strain curve is constructed. This plot is shown in
Fig. 11�b� along with the corresponding engineering stresses and
an alternative plot of true stress based on the well-established
relationships whereby 
=s�1+e�, where e is the nominal strain, s
is the engineering stress, and 
 is the true stress. This formula
assumes a constant volume deformation and a homogeneous cross
section. In the current analyses, compressible elastic deformation
is negligible and, as can be seen from Fig. 9, the strut cross sec-
tions are relatively homogeneous at UTS. However, both true

Fig. 8 Stress-strain curves for 3D models with the rhombic-
dodecahedron crystal configuration „solid gray lines…, cylindri-
cal crystal configuration „solid black lines… and for 2D models
with first-order elements „broken gray lines…: „a… full stress-
strain plot and „b… stress-strain relationships at UTS

Fig. 9 Contour plots of von Mises at a strain of 0.5 for „a…
cylindrical crystal configuration and „b… rhombic-
dodecahedron crystal configuration
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stress curves deviate significantly at strains as low as 0.2. At
higher strains, the true stress curve derived from the aforemen-
tioned formula exhibits softening. Although such behavior is un-
physical, it is interesting to note from Fig. 11�b� that the onset of
softening �point B� occurs at the same nominal strain as the point

of inflection of the true stress curve calculated from the actual
neck cross-sectional area �point A�. This point can be determined
from the engineering stress-nominal strain curve from the crite-
rion given in Eq. �6� corresponding to point C in Fig. 11�b�

ds

de
=

− s

1 + e
�6�

As can be seen from Table 1, the true strain at which this criterion
is satisfied corresponds very closely to the necking strain for all
3D analyses: compare column 5 ��� with column 7 ��form� in
Table 1. In order to examine further the robustness of this crite-
rion, 2D analyses, where crystal orientations have a more signifi-
cant effect on mechanical behavior, are considered. A study of
cross-sectional areas reveals a large variation of nominal strains at
necking, as shown in Fig. 12�a�, ranging from 0.6 to 0.81. It can
be seen from Table 1 that the corresponding true strains at necking
are very similar to the true strains that satisfy Eq. �6� for all three
orientations, despite the strong dependence of the stress-strain re-
lationships on grain orientations �compare column 5 to column 7
in Table 1�. It should also be noted that the use of eight-noded
second-order elements results in an increase in failure strain of
�3% for all orientation sets.

The portions of the engineering stress-engineering strain curves
between UTS and necking are highlighted in Fig. 12�b�. This fur-
ther underlines the inadequacy of UTS as a predictor of material
ductility and failure.

In order to further examine the localization of deformation dur-
ing necking, von Mises stress, hydrostatic stress, and the logarith-
mic strain component in the direction of stretching are computed
for three distinct groups of elements in the interior of the strut, for
the rhombic-dodecahedron grain analysis, as shown in Fig. 13,
located remote from the site of necking �Fig. 13�a��, immediately
adjacent to the site of necking �Fig. 13�b��, and at the site of
necking �Fig. 13�c��. Plots of averaged logarithmic strain �Fig.
14�a�� reveal a distinct change in material behavior at a nominal
strain of 0.74. Following this point, strains remote from the neck-
ing region undergo no further increase. In contrast, strains at the
neck increase at a higher rate following this point. In the group of
elements adjacent to the neck, the increase in strain becomes
lower following a nominal strain of 0.85 as the region of necking
becomes further localized. As regards the von Mises stress �Fig.
14�b��, a reduction of von Mises stress following a nominal strain
of 0.74 in elements remote from the necking region clearly indi-
cates the occurrence of elastic unloading. Further localization of
the necking region is evident at a nominal strain of 0.85 with the
von Mises stress then reducing in the elements immediately adja-
cent to the neck. At a nominal strain of 0.9, the von Mises stress
in the neck begins to decrease slightly. In contrast, the hydrostatic
stress �Fig. 14�c�� continues to increase dramatically in the same
group of elements for nominal strains of 0.9. The hydrostatic
stress reduction adjacent to the neck also reveals further localiza-
tion of the necking region at a nominal strain of 0.85. Plots of
averaged values of triaxiality, defined as �hydrostatic stress/von
Mises stress�, are shown for the three aforementioned regions of
the struts in Fig. 14�d�. An additional curve is computed for the
elements along the outer edges of the necked region. Following
the onset of necking, the triaxiality of the elements at the center of
the necked region increases at a greater rate than that of the ele-
ments at the edges of the necked region. Interestingly, the triaxi-
ality of the region immediately adjacent to the necked region de-
creases at a much greater rate than that of the region remote from
necking.

It is worth noting that the 3D crystal plasticity simulations
proved to be extremely demanding on computational resources;
each taking on the order of 25 days on two processors of an SGI
3800 high-performance computer. The 2D crystal plasticity simu-
lations took on the order of 24 h on the same machine using a
single processor.

Fig. 10 „a… Cross-sectional areas at ten evenly spaced sec-
tions throughout strut length, „b… 3D analysis with rhombic-
dodecahedron grains „curves for sections 7–9 labeled…, and „c…
2D analysis „curves for sections 7, 8 and the location of the
neck „between 7 and 8… labeled…. „d… Comparison of cross-
sectional area at neck for 3D analyses using rhombic-
dodecahedron and cylindrical grains.
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In order to examine the generality of Eq. �6� for the onset of
necking, homogeneous struts with geometric imperfections are
considered. Plots of normalized decreases in area versus nominal
strain are shown in Fig. 15�a� for a 3D strut with a 1% linear
decrease in width and thickness from the strut end to the strut
center point. From this plot, it is difficult to pinpoint the exact
strain at which necking initiates. Clearly, some localization occurs
prior to UTS, but it should also be pointed out that a significant
increase in the rate of area reduction at the strut center point
occurs prior to the nominal strain determined from Eq. �6�. A 2D

generalized plane strain simulation with a similar linear reduction
in thickness �Fig. 15�b�� suggests that such an increase in the rate
of area reduction occurs at a higher nominal strain than that de-
termined from Eq. �6�. A similar trend is observed for a 2D strut
with a notch at the center point �Fig. 15�c��. Further simulations
involving variation in the percentage decrease in strut width and
thickness and a nonlinear decrease in width and thickness over the
length of the strut for both 2D and 3D geometries suggest that Eq.
�6� cannot be readily generalized to necking, resulting from geo-
metric defects in homogeneous struts. Indeed, the vastly different

Table 1 e=engineering strain, s=engineering stress, �=true strain, �=true stress, �UTS=true
strain at UTS, �UTS=true stress at UTS, �n=true strain at initiation of necking, �n=true stress at
initiation of necking, �form=true strain at which the criterion of Eq. „6… is satisfied

Fig. 11 „a… Comparison of engineering stress „broken line…,
true stress computed from �=s„1+e… „black line… and true
stress computed from actual neck cross-sectional area „gray
line… for 3D analysis using rhombic-dodecahedron grains. „b…
Comparison of true stress-true strain curves for 3D analyses
using rhombic-dodecahedron and cylindrical grains.

Fig. 12 „a… Cross-sectional area at the neck for the 2D analy-
ses using three different sets of random crystal orientations
and „b… sections of engineering stress-nominal strain curves,
where hardening occurs post UTS shown in black, for the 2D
analyses
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ratios of strain at necking to strain at UTS computed for 3D and
2D simulations merits further investigation that is beyond the
scope of the current study.

In the aforementioned work of Miles �19�, the ratio of bifurca-
tion true stress to maximum true stress for a bar of rectangular
cross section under uniaxial tension is given as


b


m
= 1 + �1 − �dEt

d

�

m
−1� 1

12
�2 +

1

12

�


m

c2

b2�2 �7�

where Et is the tangent modulus, c is the half width of the bar, b
is the half depth of the bar, � is the shear modulus and �
=k�b /L where L is the bar length and k is an integer which
corresponds to the position at which a neck associated with the
bifurcation occurs. For example a value of 1 gives the earliest
occurrence of a bifurcation corresponding to a neck at one end of
the specimen. Similarly for true strains
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whereby


b − 
m

�b − �m
= 
m �9�

at the point of bifurcation. 
b and �b refer to true stress and true
strain at the bifurcation, and 
m and �m refer to true stress and true
strain at UTS. Using the dimensions, shear modulus, and average
hardening properties of the specimens considered in this study,
and assuming k=1, a ratio of true stress at bifurcation to true
stress at UTS of 1.344 is calculated. Ratios of necking stress to
stress at UTS for the analyses performed in the current work are
shown in Table 1. Values range from 1.275 to 1.297 for 2D analy-
ses and from 1.185 to 1.225 for 3D analyses. Similarly, Eq. �8�

Fig. 13 3D rhombic-dodecahedron grain model shown in Fig. 7„d…. Location of element groups „a… remote from neck, „b…
adjacent to neck, and „c… at neck.

Fig. 14 Plots of average „a… logarithmic strain �11, „b… von Mises stress, „c… hydrostatic stress, and „d… triaxiality in region
remote from necking „broken lines…, in region adjacent to necking „black lines… and at neck „gray lines…. „d… shows an
additional curve for the average triaxiality of the elements on the outer edges of the necked region „black with triangles….
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yields a ratio of true strain at bifurcation to true strain at UTS of
1.765. From Table 1, it can be seen that all computed ratios of
strain at necking to strain at UTS are far lower than this value.

Discussion and Conclusions
2D analyses exhibit a high dependence on crystal orientation in

terms of hardening behavior, UTS, and necking strain. 3D analy-
ses, in particular, cylindrical crystal configurations, reveal far less
dependence on crystal orientations. This can easily be explained
by the fact that 2D geometries are comprised of far fewer crystals;

thus, crystals orientated favorably toward shear slip and conse-
quent formation of shear bands play a far more dominant role in
the deformation of the strut than is the case for the 3D models,
where the deformation of such favorably oriented crystals is con-
strained by many more neighboring crystals that could be less
favorably orientated for shear band formation. Second-order ele-
ments were shown to yield a lower rate of hardening and UTS
than first-order elements. The computed differences are similar for
all sets of crystal orientations. The hardening rate and yield stress
of 3D is lower than that computed for 2D analyses, resulting from
the fact that the 2D generalized plane strain is an artificially stiff
formulation.

In contrast to 2D analyses, all s-e curves for 3D analyses are
identical up to 20% strain, regardless of crystal orientation con-
figuration. After this point, however, the rhombic-dodecahedron
crystal configuration exhibits slightly more dependence on crystal
orientation and a lower UTS than the cylindrical crystal configu-
ration. It should be noted that both configurations were con-
structed as a 3D microstructural idealization for a given number of
grains across the strut width and depth. This leads to a slightly
higher number of grains in the cylindrical configuration �1980�
than the rhombic-dodecahedron configuration �1875�. If the lower
number of crystal orientations associated with the rhombic-
dodecahedron configuration were significant, the effects would be
apparent in the early stages of hardening as was the case in the 2D
analyses. It can be inferred from 2D analyses that element type
and mesh density do not effect patterns of dependence on crystal
orientations. It is therefore felt that the differences in the two 3D
configurations lie in the fact that the square nature of the crystal
geometry and alignment in the out-of-plane direction for the cy-
lindrical configuration discourages the formation of shear bands
and subsequent necking in the out-of-plane direction.

With regard to comparison of the computational s-e curves gen-
erated in this study to the polycrystalline data measured experi-
mentally by Okamoto et al. �11�, a number of observations should
be made. The elastic modulus of the experimental curve is ex-
tremely low, suggesting experimental error. Low measured elastic
moduli for 316L are not totally unusual; the tensile stress-strain
data of Weldon et al. �34� revealed elastic moduli significantly
lower than the expected value of �crica� 200 GPa, and this was not
due to defects in the material. The elimination of such errors was
achieved by the calibration of the experiment and the introduction
of a correction factor Cuddy �35�. Even though the elastic modu-
lus in �11� is low, the subsequent hardening rate is almost identical
to that computed using the 3D geometries and lower than the
hardening rates computed using 2D models.

The experimentally measured stresses are higher than those
computed using the 3D models �UTS: �540 MPa for alloy T in
�11� versus �510 MPa, maximum 3D model prediction�. One
possible explanation for this is the very low strain rate used in the
present study. The experimentally measured strain at UTS of
�75% �for alloy T in �11�� is also higher than the computationally
predicted values ��63%, maximum 3D model prediction�. This is
more than likely due to the fact that the number of grains in our
models is far lower than is the case in the macroscopic polycrys-
talline specimens used experimentally by Okamoto et al. �11�. The
additional grains would provide further constraint against the for-
mation of shear bands and, as is evident from this study, increase
the strain at UTS. This phenomenon of greater constraint on the
development of localized deformation �and, hence, greater mac-
roscale ductility� with increase in strut thickness �and, hence, the
number of grains in the cross section� was investigated and con-
firmed in the experimental study of Murphy et al. �7� and the 2D
computational study of Savage et al. �8�. Given current computa-
tional constraints, bearing in mind the extremely long run times
required for the simulations reported here, the 3D macroscopic
modeling of larger samples, reflexive of the Okamoto et al. poly-
crystalline samples, is not feasible. The effect of strain rate on
hardening and UTS has not yet been numerically established but

Fig. 15 Plots of section areas normalized by original section
areas versus nominal strain for homogeneous struts with geo-
metric imperfections: „a… 3D simulation for tapered strut, „b… 2D
simulation for tapered strut, and „c… 2D simulation for notched
strut. Unlabeled vertical line corresponds to nominal strain at
which Eq. „6… is satisfied and vertical line labeled UTS corre-
sponds to the nominal strain at UTS.
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is also the subject of an ongoing investigation. It is also worth
noting that a recent comprehensive experimental investigation of
the mechanical performance of 316L wires and laser-cut tube
struts �35� has revealed a general increase in UTS with increase in
wire/strut thickness; this corroborates the observation here that the
UTS values in �11� for �relatively� large polycrystalline samples
are greater than the predicted values for 75 �m thick strut models.
In light of all of these considerations, it could be concluded that in
overall terms, the model predictions are not unreasonable when
compared to the Okamoto et al. data.

The curves computed in this study do not compare favorably to
the experimental curves of Murphy et al. �7� for stainless-steel
struts of thickness 75 �m in terms of yield strength, hardening
rate, UTS, and failure strain. For example, in �7�, a yield strength,
UTS and strain at UTS of �400 MPa, 650 MPa, and �25%, re-
spectively, were observed. Even the introduction of failure mecha-
nisms, such as void coalescence and intergranular fracture, would
not account for discrepancies in yield strength and initial harden-
ing rate. This suggests that the single-crystal material properties
used in this study, determined from the single-crystal experimen-
tal data of Okamoto et al. �11�, are not relevant to the stainless-
steel alloy used by Murphy et al. �7�. A study involving the deter-
mination of single-crystal properties appropriate for the stent
struts tested by Murphy et al. �7� is currently in preparation.

In addition, it should be emphasized that the macroscopic me-
chanical properties of 316L are highly dependent on the particular
alloy composition and heat treatment. This can be seen by con-
trasting the experimental data of �11,7�, quoted above, with that
reported in �34�, where for an annealed 316L alloy a yield strength
of �690 MPa, a UTS of �890 MPa and an elongation at break of
�37% were observed. This significant scatter in experimental
data strongly supports the notion that in using such models for
material property prediction, appropriate single-crystal properties
for the material in question must be used.

Taking all the above computational model predictions versus
experimental observation discussion into consideration, it is the
authors’ opinion that, once a representative 3D model morphology
is in place, the specification of the single-crystal material proper-
ties is vital for the prediction of reasonable macroscale mechani-
cal properties, such as yield strength and UTS. In fact, this may be
practically all that is required for dealing with materials that are
relatively defect free. The inclusion of microscale damage and
fracture models, which would hugely complicate the computa-
tional analysis, may only be necessary for materials with a large
defect content, or should the user wish to explicitly model mate-
rial separation leading up to final rupture. Certainly, for example,
the inclusion of damage models in the analysis for improvement
in the comparison of the model predictions with the Okamoto et
al. data would be futile as they would only serve to reduce the
predicted UTS and strain at UTS below existing low values.

In summary, 3D modeling results highlight the inaccuracies in-
herent in 2D generalized strain crystal plasticity in terms of pre-
diction of yield stress, hardening, and UTS. The unrealistically
low number of grains in 2D models allows for the formation of
shear bands at lower strains and for an excessive dependence on
randomly generated crystal orientations. With regard to the crystal
configuration in 3D models, cylindrical grains, due to their un-
physical geometry in the out-of-plane direction, provide an exces-
sive inhibition of shear band formation compared to the more
realistic rhombic-dodecahedron configuration.

A detailed examination of cross-sectional areas throughout the
strut length reveals a distinct pattern of necking characterized by a
rapid localized decrease in cross-sectional area in the vicinity of
the neck and elastic unloading at all other sections. Such localized
deformation initiates at strains significantly higher than strains at
UTS, with ratios of true strain at necking to true strain at UTS
ranging from 1.21 to 1.44 for 2D analyses and from 1.21 to 1.31
for 3D analyses. Again, the wide range of values for 2D analyses
can be related to the artificially low number of grains in such

models. Necking occurs at higher strains for simulations with cy-
lindrical grains than for simulations with rhombic-dodecahedron
grains as the former configuration is less conducive to the forma-
tion of shear bands. The occurrence of necking post UTS is con-
sistent with the bifurcation studies of Cowper and Onat �16�,
Hutchinson and Miles �17�, and Miles �19� and the numerical
study of Tvergaard �36�. For the specimens considered in this
study, the ratios of true stress at necking to true stress at UTS
compared favorably to the ratio determined from the formulation
of Miles �19�. Similar comparisons for true strain ratios do not
compare as favorably. This is because the prediction of true strain
in the work of Miles �19� is based on the assumption of a constant
slope of the true-stress–true-strain curve following UTS. In the
present detailed computational study, this assumption is shown to
be inappropriate; in fact, the onset of necking is marked by a
definite point of inflection in the true-stress–true-strain plots.

The quantity s�1+e� is shown to deviate from the correspond-
ing true-stress values at strains far lower than the strain at UTS,
despite the relative homogeneous strut cross sections at UTS. It is
also observed that the onset of necking coincides with a slope of
the s-e curve of −s / �1+e� for all analyses. Although the rigor of
this condition remains to be established, as does its generality, it
suggests that the s-e curve can potentially be used to pinpoint the
onset of necking. However, initial computations suggest that the
formula cannot be readily generalized to necking due to geometric
imperfections in homogeneous rate-independent struts. An ongo-
ing investigation is being performed to test the applicability of the
formula to a wider range of inhomogeneous strut microstructures
for different loading rates, rate exponents, and single-crystal
strain-hardening properties. For future developments of detailed
computational models of the type considered here, it may be nec-
essary to consider developing enhanced constitutive representa-
tions of the material for large localized strain levels to better take
account of evolving dislocation structures, as discussed in Hoc
et al. �12�.

With regard to the computed stress state at the site of necking,
a dramatic increase in hydrostatic pressure at the center of the
neck is computed. This is consistent with the findings of Tver-
gaard and Needleman �24� for round bars. The high rate of in-
crease of triaxiality at the center of the necking region compared
to the outer edges of the necking region is consistent with the
reported findings of Alves and Jones �25� and Hancock and Brown
�23�. It is shown by Bao �37� that the increased triaxiality at the
center of the neck is a critical factor for ductile crack formation in
tensile specimens. Most significant in this result is the fact that the
stress patterns at the neck of notched specimens are replicated in
the current analyses where necking is entirely due to material
inhomogeneity and not artificially induced by geometric features
�38�.
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Dynamic Failure Behavior of
Polycrystalline Alumina Under
Impact Loading
Plate impact experiments and impact recovery experiments were performed on
92.93 wt. % aluminas using a 100 mm dia compressed-gas gun. Free surface velocity
histories were traced by a velocity interferometry system for any reflector (VISAR) veloc-
ity interferometer. There is a recompression signal in free surface velocity, which shows
evidence of a failure wave in impacted alumina. The failure wave velocities are
1.27 km/s and 1.46 km/s at stresses of 7.54 GPa and 8.56 GPa, respectively. It drops to
0.21 km/s after the material released. SEM analysis of recovered samples showed the
transit of intergranular microcracks to transgranular microcracks with increasing shock
loading. A failure wave in impacted ceramics is a continuous fracture zone, which may be
associated with the damage accumulation process during the propagation of shock
waves. Then a progressive fracture model was proposed to describe the failure wave
formation and propagation in shocked ceramics. The governing equation of the failure
wave is characterized by inelastic bulk strain with material damage and fracture. Nu-
merical simulation of the free surface velocity was performed in good agreement with the
plate impact experiments. And the longitudinal, lateral, and shear stress histories upon
the arrival of the failure wave were predicted, which present the diminished shear
strength and lost spall strength in the failed layer. �DOI: 10.1115/1.2722777�

1 Introduction
Since failure waves were first observed propagating in a glass

rod under dynamic compression by Bless et al. �1� and in a glass
plate under high-pressure impulsive loading by Rasorenov et al.
�2� and Kanel et al. �3�, a series of plate impact experiments, bar
impact experiments, and impact recovery experiments have been
performed on a range of glasses under various impact stress diag-
nosed through embedded manganin stress gauge and strain gauge
by Rosenberg et al. �4�, Bourne et al. �5,6�, and Millett et al. �7�,
velocity interferometer system for any reflector �VISAR� and
high-speed photography by Cazamias et al. �8�, He et al. �9�, Bless
et al. �10�, and Bourne et al. �11�. There are diverse physical and
mechanical characterizations that identify a failure wave propa-
gating behind the elastic precursor, and there has been a consid-
erable amount of effort expended to explain them.

The failure fronts are generated in silicate and filled glasses at a
stress near or below their Hugoniot elastic limits �HELs� and
propagate from impact surface to interior at velocities in the range
of 1.5–2.5 km/s. It is worth noting that a particular feature of the
failure waves is that the velocity is dependent on the impact stress.
The failed glass has lower acoustic impedance and sound speed
than the intact material. The failed layer nearly looses complete
tensile strength, and its shear strength is significantly degraded.
The longitudinal stress and transverse strain remain constant
across the failure front, but the transverse stress and longitudinal
strain are increasing with time in the region behind the failure
front. All these variations of material properties across this front
provide experimental evidences for the existence of a failure wave
phenomenon for glass under plate normal impact loading.

In recent years there has been some wide research made into
other brittle materials. Bourne et al. �5,12,13� and Zhang et al.
�14� have extended these studies to the polycrystalline ceramics
alumina, silicon carbide and titanium diboride, gabbro, and
3D-C/SiC composite materials and have postulated similar

impact-induced fracture front in these brittle materials. There has
also been recent discussion of the phenomenon of gradual failure
behind the elastic wave in mortar by Grote et al. �15�. Rasorenov
et al. �2�, Clifton �16�, and Grady �17� discussed the mechanism of
its formation and propagation and proposed some scientific hy-
pothesizes, including shear-induced microcracking, phase trans-
formation, and the transfer of elastic shear strain energy to dilatant
strain energy summarized by Brar �18�.

Thus far the study on the failure wave has focused on accumu-
lative acquaintance with its physical and mechanical characters
monitored in experiments with restriction of experimental condi-
tions of high-pressure loading and monitoring techniques for high
resolving wave profiles. And there is not a perfect model to ex-
plain the formation and propagation of the failure wave and
mechanism of interaction between failure wave and material, even
to simulate the basic mechanical response characters behaved in
experiments satisfactorily. This is the emphasis and difficulty in
study on the failure wave, and main reason why scholars have
been interested in failure waves for so many years. In the work
presented, we have conducted a matrix of plate impact experi-
ments on alumina monitored by VISAR focused on the rear sur-
face of the sample in seeking to pursue the failure wave in brittle
materials other than glass. Then a progressive fracture model was
proposed to analyze the failure wave formation and propagation in
ceramics under planar impact loading with research into their het-
erogeneous mesostructures and its result in high singularity in the
stress field. Then numerical simulation of the mechanical proper-
ties about the failure wave was performed to compare to alumina
plate impact experiments.

2 Plate Impact Experiments
Plate impact experiments on alumina specimens were carried

out on the 100 mm light gas gun at the National Defense Science
and Technology Key Laboratory of China Academic Engineering
Physics. Impact velocities were measured to an accuracy of 1.5%
using three pairs of electric signal pins at different distances away
from the impact surface. The copper flyers and targets were cir-
cular with different diameters of 94 mm and 100 mm, with their
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two cut faces polished in order to ensure smoothness of the impact
and measurement area. Free surface velocity histories were traced
using VISAR with a fringe constant 101 m/s/fringe and a mea-
sured response time 1.5 ns. The free surface of target was polished
and aluminized with a layer 5000 Å in thickness to strengthen the
reflection of incident laser �see Fig. 1, which shows a schematic of
the experimental setup�. The impact recovery experiments were
also performed to study microstructures of impacted samples.
Cushion rubber was filled in the target room to absorb the dy-
namic energy of flyer and target. The flyer and target will be
embedded in rubber.

The alumina samples manufactured by No.799 Factory in Si-
chuan, which consist of 92.93 wt. % alumina by weight and a

small amount of silicon dioxide, calcium oxide, and lanthana ana-
lyzed by energy spectrum at National Key Laboratory in Chengdu
Science and Technology University. The relevant parameters of
the specimens are density 3.896�103 kg/m3, longitudinal sound
speed 9.259 km/s, and a shear wave velocity 5.557 km/s, respec-
tively. The longitudinal sound speed in copper flyer is 4.60 km/s,
and the thickness of flyers and targets range from
4.0 mm to 6.1 mm. The acoustic impedance ratio of flyer and tar-
get is 1.14, then a long-enough duration pulse generates at the
impact surface to avoid the unloading wave propagating into tar-
gets from flyers. A summary of experimental conditions and re-
sults are presented in Table 1.

Figure 2 shows reduced VISAR data by software from the ex-
periments of shots 405 and 425 under shock stresses 7.54 GPa and
8.56 GPa. These profiles indicate that the alumina specimens did
not spall. The distinct feature of note on the traces is the slight
recompression signal pointed on top of the stress wave. This ve-
locity jump behaves beyond the elastic behaviors because there is
not a reflected tensile pulse recorded in the profiles and the time
interval between the start of free surface motion and the moment
of this reloading signal is less than the elastic wave reverberation
time in the sample. And, as a typical brittle material, alumina does
not behave like plastic deformation in the macroscope; thus, this
inelastic behavior does not characterize plasticity, though the free
surface velocity profile has two-wave structure. The additional
weak compression wave is associated with a reflection from a
layer of material that has a dynamic impedance lower than that of
the intact alumina, and this material layer bordering the interface
does not pass tensile stresses. Therefore, we conclude that the
shock-compressed alumina is comminuted behind this interface.
This phenomenon is akin to the failure wave, which has been
observed to occur in glasses under shock compression shown in
Fig. 3 by He et al. �9�, Kanel et al. �19�, and Zhao et al. �20�.

On the assumption that the moving speed of failed layer bound-
ary is the failure wave velocity CF, a simple evaluating equation

Fig. 1 Plate impact experimental schematic with VISAR

Table 1 Parameters of plate impact experiments

Parameters Shot 405 Shot 425

Impact velocity �m/s� 397.8 448.8
Impact stress �GPa� 7.54 8.56
Impactor thickness �mm� 4.14 6.10
Target thickness �mm� 6.08 6.04

Fig. 2 Free surface velocity profiles showing small recompression for shots 405
and 425

Fig. 3 Free surface velocity profiles of glass monitored by VISAR †9,19,20‡
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for CF has been derived as the following �see Fig. 4, which shows
a diagram of elastic wave and failure wave propagating�. The
thickness of the failed layer hf is determined from the measured
time interval of ts through

hf = h − 1
2CPts �1�

where h is the sample thickness and CP is the longitudinal wave
speed in alumina specimen. Then the failure wave velocity CF can
be estimated by

CF =
hf

h/CP + ts/2
�2�

It implies that the failure wave has propagated at a velocity of
1.27 km/s in shot 405 km/s and 1.46 km/s in shot 425 on aver-
age before the moment tf. The free surface velocity history from
VISAR measurements has shown that the failure front propagates

at a speed much lower than longitudinal stress wave velocity,
depending on the peak shock stress.

The free surface velocity profile from shot 425 is analyzed fur-
ther in expanded region, and there is another smaller recompres-
sion signal observed following the first �see Fig. 5, which shows
second smaller recompression indicated by a narrow�. This can be
explained if the reflected rarefaction wave from rear surface is
reflected again on the failure layer and then reflected on rear sur-
face where a weak jump of velocity is produced at the same time.
During the time interval ts1 of two recompression signals, the
distance of failure layer expanded can be determined through

�hf = hf1 − hf = h − 1
2CPts1 − hf �3�

Then, the average velocity CF1 of failure wave propagating from
the moment tf to tf1 can be estimated from the measured time
interval of ts1 by

CF1 =
�hf

�ts − ts1�/2
�4�

This implies that the failure wave has propagated at an average
velocity of 210 m/s in shot 425 following unloading by the re-
flected rarefaction wave. This unloading slows down and even
eventually arrests the failure procedure in material and results in
great lowness in the failure wave propagating.

3 Microscopic Observations of Alumina Samples
To explain the failure process of shock-compressed polycrystal-

line ceramics in a mesoscope, initial and soft-recovered samples
were scanned by S530 scanning electron microscope �SEM�. Each
fragment was cut in the center along a plane parallel to impact
surface with 0.2 mm distance to impact surface. Figure 6�a�
shows the microstructures of initial 92.93 wt. % alumina. Grains
and intergranular pores distribute randomly with diameters
1–15 �m. Intergranular glassy phase is distinct in compact area.
And initial porosity is 5.68%, determined by metallurgical analy-
sis software. Pores and glasses weaken mechanical capabilities,
and these heterogeneous mesostructures result in high singularity
in stress distribution. Figure 6�b� shows intergranular microcracks
in recovered sample after 5.76 GPa loading and Fig. 6�c� shows
transgranular microcracks in recovered sample after 8.65 GPa
loading. Microcracking transmits from intergranular to trans-
granular with increasing impact compression. Alumina grains be-
gin to fragment with transgranular microcracks, and original pores
begin to collapse. And discontinuous microcracks induce dilation
after unloading.

The polycrystalline ceramics are heterogeneous in mesoscope.
There are many pores, microcracks, and other defaults inducing
high singularity in stress distribution. Once the local stress ex-
ceeds the threshold, the original microcracks will grow up along
the pores and crystal boundaries, and new microcracks will nucle-
ate in ceramics under shock loading. The original and nucleated
microcracks grow up and expand, then excite the neighbor micro-
cracks nucleation and expansion. Thus, the failure wave appears
and propagates from impact surface to interior of specimen and at
higher velocity under stronger shock loading. In essence, the fail-

Fig. 4 Propagation and interaction of compression, rarefac-
tion and failure waves

Fig. 5 Expanded region of free surface velocity profile show-
ing second small recompression signal from shot 425

Fig. 6 SEM micrographs of „a… initial and recovered alumina samples under
„b… 5.76 GPa, and „c… 8.65 GPa shock loading
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ure wave is characterized by moving damage or fracture zone of
material that presented by microcracking system in mesoscope,
and it is also called after fracture wave by Resnyansky et al. �21�.

4 Progressive Fracture Model

4.1 Governing Equation of the Failure Wave. The mesos-
copic deformation of discontinuous microcrack interfaces and col-
lapse of original pores in impacted ceramics can be equivalent to
the inelastic bulk strain �V

ne, statistically, which consists of dilatant
bulk strain �V

c from nucleation and expansion of microcracks and
condensed bulk strain �V

p from collapse of original pores. Thus,
the state variable �V

ne at the failure front can be governed by the
wave equation of

��V
ne

�t
+ CF

��V
ne

�X
= �V0

ne �5�

where �V0
ne is source or convergence of inelastic volume, which

controls the attenuation of the failure wave propagation, and
CF�X , t�=C0��X , t� is the failure wave speed, which depends on
the strength of shock loading. The material parameter C0 is the
failure wave speed when the shock loading is up to the specimen’s
HEL and ��X , t� denotes the strength of shock loading through

� =
�

�HEL
H�� − �THD� �6�

where H is the heaviside function, �THD is the threshold of the
failure wave formation, �HEL is the shear stress when the shock
loading is equal to the specimen’s HEL, which corresponds with
transition from intergranular to transgranular microcracking in ce-
ramics, and ��X , t� is the maximum shear stress in mesoscope. For
brittle polycrystalline ceramics, the inelastic deformation and fail-
ure response are governed by mean stress and shear stress; thus,
��X , t� can be expressed by

� =
�3

2
���I1 + �J2� �7�

where I1=	ii, J2=1/2	ij�	ij� , � is a positive material parameter,
and � defines the stress singularity induced by heterogeneous
mesostructures. In glass, the failure wave was observed with im-
pact stress up to half the HEL �22�. Thus, � is equal to 0.5.
Equation �7� can be rewritten under a one-dimensional �1D�-strain
condition as

� = 1
2���3��	1 + 2	2� + �	1 − 	2�� �8�

where 	1 and 	2 are longitudinal and lateral stresses.
Equation �6� is criterion of dynamic failure for ceramics. Dam-

age nucleates when shear stress ��X , t� reaches the threshold �THD;
thus, there are inelastic deformation and failure in polycrystalline
ceramics under shock loading below their HELs. And velocity of
the failure wave increases with increasing pressure, just as ex-
pressed in Eqs. �6� and �7�.

4.2 Conservation Equations of the Failure Wave. There are
some basic assumptions for the failure wave that it is a discon-
tinuous surface and has no apparent thickness. Figure 7 illustrates
a failure wave and the elastic precursor. Ahead of the failure front
and behind the elastic precursor, the density is 
1, the stress is �1,
the strain is �1, the particle velocity is v1, and the internal energy
is e1; behind the failure front they are 
, �, �, v, and e, respec-
tively. If one considers the failure front propagation from position
A to B in time interval dt. During this time interval, the front has
moved by a distance of CFdt. Based on the conservation of energy
in AB during dt, the equation for the conservation of energy at the
failure front is drawn in Lagrangian form as

J = CFD + CF��:d�e� + 1
2
1�v · v� �9�

where ��� denotes ��−�1�, the density of energy flow is J=
−�� ·v� ·n, and the ratio of energy dissipation is

D = ec + ep = �:d�c + �:d�p �10�

And the equations for the conservation of mass and momentum at
the failure front are set up in Lagrangian form as

�v� = − CF��� �11�

�� · n� = − 
1CF�v� �12�

4.3 Constitutive Relations of Ceramics. The inelastic dila-
tant strain increment due to nucleation and expansion of microc-
racks in brittle material is calculated from linear Drucker-Prager
model as follows

d�V
c = d�̄c 1

3 − tan �
�� 3

J2
�	1 − 	2� + tan �� �13�

where d�̄c is the equivalent inelastic strain increment which is
equal to �d�1

c� in the uniaxial compression case, and � is the ma-
terial’s friction angle. Mean stress influences the yield of brittle
materials by inner friction, so the bulk strain is inelastic of ceram-
ics under mean stress. In general, the dilatant bulk strain from Eq.
�13� is higher than that in experiment; thus, � can be assumed to
be material’s dilation angle. For brittle granule solid, its dilation
angle is smaller than the friction angle.

When shear stress reaches the failure threshold �HEL, nucleation
and expansion of intergranular microcracks transit to transgranular
microcracks in ceramics and original pores begin to collapse.
Then inelastic deformation is gradually governed by mean stress
from shear stress, just like sands. According to the conclusion that
the bulk strain and porosity of sand soil is in direct proportion to
the denary logarithm of mean stress, the relation of porosity n of
fragment ceramics and mean stress p can be written as

n = nHEL − Cc lg
p

pHEL
�14�

where nHEL is the porosity of the failed layer under shock loading
up to its HEL and Cc is a compressive coefficient. Then the in-
elastic bulk strain increment from collapse of pores d�V

p is equal to
dn. The stress state when pores collapse satisfies the failure crite-
rion; thus, nHEL can be derived by original porosity n0 and the
failure volume VHEL of brittle material under shock loading up to
its HEL, i.e.,

nHEL =
VHEL

V0
n0 �15�

In order to show the lateral stress history of the failed layer
under 1D-strain condition, the material failure ratio is defined by

Fig. 7 Schematic of the failure wave and elastic precursor for
the conservation of mass, momentum, and energy
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 =
��Vd

ne � + ��Vc
ne �

��V
e � + ��Vd

ne � + ��Vc
ne �

�16�

where �V
e is elastic strain behind the elastic precursor but before

the failure wave.  trends to 1, and Poisson’s ratio � trends to 0.5
with increasing of shock compression. Thus, general Poisson’s
ratio �� in the failed layer is written as

�� = � + � 1
2 − �� �17�

So, the lateral stress can be expressed as

	2 = 	3 =
��

1 − ��
	1 �18�

With increasing of shock loading and fragmentation of the
failed layer, lateral stress 	2 trends to longitudinal stress �1, and
thus, shear stress trends to zero when material’s bulk deformation
from mean stress is dominant other than shear deformation.

5 Simulation of the Failure Wave
Alumina grains begin to fragment with transgranular microc-

racks and original pores begin to collapse in shots 405 and 425
with shock stresses 7.54 GPa and 8.56 GPa, respectively. Then
inelastic deformation is gradually governed by mean stress. The
material dilation angle � of 92.93 wt % alumina is assigned to be
40 deg, then �=�3 tan � /9=0.1615. The failure ratios of shots
405 and 425 in their failed layers are 0.320 and 0.556, respec-
tively. Compressive coefficient Cc is defined by Eq. �15�. Accord-
ing to metallurgical analysis on micrographs of impact recovery
specimens scanned by electron microscope, the porosity is zero
with most grains in fragments and pores stuffed when impact
stress up to 1.5HEL. Figure 8 shows the free surface velocity
histories with recompression signal of 92.93 wt % alumina in
shots 405 and 425, and the progressive fracture modeling is in
good agreement with experiments. Figure 9 shows the longitudi-
nal stress, lateral stress, and shear stress histories of shots 405 and
425 at 1.16 mm into the targets, in which we see that the lateral
stress increases greatly upon the arrival of the failure wave. The
longitudinal stress remains constant across the failure front, there-
fore the shear stress decreases somewhat in the failed layer, and
the material shear strength as well. The stress evolvements above
agree well with that of impacted SiC ceramics traced by
Bourne et al. �13�.

6 Summary
Ceramics are extensively applied to national defense engineer-

ing and military science as effective armor defense with their
excellent physical and mechanical capabilities, especially higher
dynamic elastic threshold and acoustic velocity than metals. We
performed plate impact experiments of 92.93 wt. % aluminas with

100 mm diameter compressed-gas gun and the free surface veloci-
ties were traced by VISAR. There is a reloading signal observed
in free surface velocity, which indicates the failure wave propaga-
tion behind the elastic precursor. The failure wave propagates at a
speed much lower than longitudinal stress wave velocity, depend-
ing on the peak shock stress. And the failed layer has much lower
dynamic impedance than that of the intact material. The unloading
by the reflected rarefaction wave slows down and even eventually
arrests the failure front propagating in alumina. SEM analysis of
intact samples shows heterogeneous mesostructures, and SEM
analysis of soft-recovered samples shows transit of intergranular
microcracks to transgranular microcracks with increasing shock
loading. The failure wave is a continuous fracture or damage
front, which may be associated with nucleation and expansion of
microcracks from impact surface to interior during the propaga-
tion of shock waves.

Based on the study of mesostructure heterogeneity and its in-
duced high singularity in the stress field in ceramics, the inelastic
bulk strain is decomposed into two parts of dilatant bulk strain
from nucleation and expansion of discontinuous microcracks and
condensed bulk strain from collapse of original pores. And the
criterion of damage and failure of ceramics is expressed by shear
stress in mesoscope. Then governing equation of the failure wave
is built up, which characterized by the inelastic bulk strain and
dynamic constitutive relations of shocked alumina as well. The
material failure ratio proposed relates the longitudinal stress with
lateral stress under 1D-strain condition very well. Numerical
simulation of the failure wave formation and propagation in im-
pacted ceramics is in good agreement with 92.93 wt. % alumina
impact experiments. And the progressive fracture model predicts
the longitudinal stress, lateral stress, and shear stress histories
across the failure wave.
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Magnetic Force and Thermal
Expansion as Failure
Mechanisms of Electrothermal
MEMS Actuators Under
Electrostatic Discharge Testing
Like microelectronic circuits, microelectromechanical systems (MEMS) devices are sus-
ceptible to damage by electrostatic discharge (ESD). At Sandia National Laboratories,
polysilicon electrothermal MEMS actuators have been subjected to ESD pulses to exam-
ine that susceptibility. Failures, in the form of cracks at points of high stress concentra-
tion, occurred that could not be explained by thermal degradation of the polysilicon
caused by excessive heating, or by excessive displacement of the legs of the actuator of
the same nature that occur in normal operation. One hypothesis presented in this paper
is that the internal magnetic forces between the legs of the actuator, resulting from the
ESD-associated high current pulses, might produce vibrations of amplitude sufficient to
produce these cracks. However, a dynamic analysis based on simple beam theory indi-
cated that such cracks are unlikely to occur, except under rather extreme conditions. On
the other hand, these same current pulses also cause resistive heating of the legs and,
therefore, thermally induced compression that can lead to buckling. Buckling stresses,
particularly when augmented by magnetic forces, can readily explain failure. Both the
magnetic and thermal analyses were performed using the human body model and the
machine model of ESD. A justification for ignoring shuttle motion and eddy currents
induced in the substrate during the ESD pulse is presented, as well.
�DOI: 10.1115/1.2723813�

Keywords: electrothermal actuator, micromechanics, failure analysis, magnetic forces,
thermal expansion, buckling of beams

Introduction
Electrothermal actuators have been extensively studied as a

means of generating rectilinear motion in microelectromechanical
systems �MEMS� �1,2� because of their ability to produce higher
output force and larger displacement at lower voltages than their
electrostatic counterparts. They operate through the thermal ex-
pansion caused by direct resistive heating. However, like inte-
grated circuits, they can be severely damaged by elsectrostatic
discharge �ESD� and electrical overstress �EOS� �3�. The former
event involves the passage of a very high current through the
device for a time much too short for thermal conduction to be
consequential, while the latter is essentially a steady-state event
involving currents that are higher than would flow through the
device in normal operation. Recent ESD testing at Sandia Na-
tional Laboratories of MEMS-based polysilicon electrothermal ac-
tuators produced failures that appear to be unrelated to the thermal
degradation of polysilicon �oxidation, surface roughening, plastic-
ity, and, in the extreme cases, melting� that had been associated
with failures during EOS testing using progressively higher cur-
rent �4,5�.

Obtained from Ref. �4�, Fig. 1 is a scanning electron micro-
graph of a typical electrothermal actuator, while a line drawing of
the same device �absent the guide and the gauge� is contained in
the top half of Fig. 2. The bottom half of that figure is a typical
cross section of a polysilicon leg. In operation, the object to be

displaced is attached to the top of the shuttle, and upward motion
is guaranteed by means of a slight inclination of the legs ��1 deg,
although it looks larger in Fig. 1�. The thermal expansion of these
resistive elements is caused by the total time-dependent current
flowing through them, I�t�. Symmetry of construction and the
presence of a guide basically guaranteed no motion of the shuttle
parallel to the legs. The ESD failures observed were brittle frac-
tures that occurred at the points of high stress concentration where
the polysilicon legs were attached to either the anchor or the
shuttle. It is noted in Ref. �4� that a calculation indicated that it
was impossible for the displacement of the shuttle, as would occur
in normal operation, to be large enough to produce such stresses,
even if the polysilicon legs were heated to their melting point
��1415°C�. This result eliminates excessive displacement of the
shuttle as the cause of the failure. However, no specific explana-
tion of the failure was offered, although the authors recognized
that the motion of the relatively massive shuttle was probably
negligible during the very brief time of an ESD pulse, and that
this constraint probably contributed to the failure. Aside from the
observation of ESD failures, no detailed failure analysis was per-
formed on the actuators to determine why some failed and others
did not.

In this paper, two failure mechanisms are proposed and ana-
lyzed that require neither motion of the shuttle nor high tempera-
tures that last long enough to produce thermal degradation of the
silicon �above �700°C for �1 min, according to Ref. �5�, as
opposed to the microsecond timescale relevant to ESD�. These
are magnetic forces and thermal expansion, which will act
synergistically.
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A magnetic force is generated when current is sent through the
polysilicon legs, causing them to attract one another and setting
them into vibration. Being internal, this force produces no bulk
motion of the system, in particular the shuttle. Can the currents be
large enough during ESD testing that the vibrating beams will
experience stress at the anchor points sufficient to break them? As
for thermal expansion, it will cause a length change in the legs
that tends to be constrained by the surrounding structures. The
result is a lateral instability, or tendency to buckle, that amplifies
the effects of the magnetic force. Will this amplification be large
enough to fracture the legs at the anchor points?

Mechanical Uncertainties
Two important characteristics of the legs are needed for the

analysis, which are not readily available. The first is the stress
concentration factor at the anchor points. This factor multiplies
the stress obtained from the conventional theory of flexure. It has
been determined photoelastically and depends on factors like the
radius of curvature of the leg at the anchor point, shoulder widths,
other beam dimensions, and the dimensions of the support �6�.
There may be no comprehensive theory of this effect and it may
be necessary to perform a numerical analysis of stress in order to

treat it accurately in a given situation. However, based on the
dimensions of the legs, an estimate of the radius of curvature, and
the empirical data in Ref. �6�, a stress concentration factor of 1.6
is reasonable. It could be 50% larger.

The second factor is the ultimate tensile strength of the poly-
silicon. A typical value for this number is around 2 GPa �7�, but,
as a brittle material, it depends noticeably on surface roughness,
surface flaws, surface area, and grain structure. Furthermore, as
noted in Ref. �7�, the strength is layer dependent, with the first
layer �“Poly 1”� of the electrothermal actuator typically being the
weakest. Its ultimate tensile strength varies from about
1–1.5 GPa. Nevertheless, 2 GPa will be used as a rough bench-
mark of the ultimate tensile strength.

Current Wave Forms For ESD Testing
As discussed in Ref. �8�, a primary example of ESD through a

sensitive device is from a human being who has been charged by,
for example, walking on a carpet and is discharged by touching
the device. A simulation of this event is known as the human body
model �HBM�, which is implemented with the circuit shown in
the top half of Fig. 3. This circuit has become a standard of the
ESD association. A 100 pf capacitor is slowly charged by a high-

Fig. 1 Scanning electron micrograph showing a plan view the electrothermal actuator

Fig. 2 Line drawing of Fig. 1 and a cross section of its polysilicon legs. The time-dependent current, I„t…,
is assumed to be equally divided between the legs. All dimensions are in microns.
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voltage power supply and, after switching, it is rapidly discharged
through 1.5 k� resistor in series with the device under test �here,
the electrothermal actuator�. These circuit parameters approximate
the capacitance to ground and the resistance of a human. A small
parasitic inductance that is part of this circuit is not shown in the
figure. The ideal result of this discharge is one of the current wave
forms shown in Fig. 4 �9�, where the voltage referred to is that
across the capacitor at the instant before discharge. The HBM
wave form is that of an overdamped RLC �i.e., resistance, induc-
tance, capacitance� circuit and can be fit to �where residual induc-
tance is obviously implied�

I�t�HBM = 0.000668V0�exp�− 0.00651t� − exp�− 0.250t�� �1�

where I�t�HBM is the time-dependent current in amps; V0 is the
initial voltage across the capacitor; and t is the time in nanosec-
onds.

Also discussed in Ref. �8� is ESD involving the discharge of a
charged machine tool or fixture through the device. A simulation
of this event is known as the machine model �MM� and it is

implemented with the standard circuit shown in the bottom half of
Fig. 3 The MM wave form shown in Fig. 4 �9� is that of an
underdamped RLC circuit and can be fit to

I�t�MM = 0.0228V0�exp�− 0.01t�sin�0.116t�� �2�

Although the ESD testing described in Ref. �4� was conducted to
assure optimum fidelity to the ideal MM and HBM wave forms,
the actual wave forms were not recorded. Nevertheless, these
ideal ESD wave forms will be used in the magnetic analysis that
follows.

Response To Magnetic Forces
.

Formulation of the Calculation. This calculation is based on the
configuration shown in Fig. 2, ignoring the slight inclination of
the legs to the horizontal that is normally included to produce
motion of the shuttle in the desired direction. The current, I�t�,
entering the bond pad is presumed to divide equally between the
two inline pairs of legs and passes through the shuttle unper-
turbed. Since the center-to-center separation between the pairs of
legs �80 �m� is much larger than the cross-sectional dimension of
the legs, the current is assumed to be filamentary within any leg
and within the shuttle. Attention is focused on one leg, such as
that between points A and B, which is assumed to be built into the
stationary shuttle and the bond pad. Thus, the displacement of the
leg and its derivative are zero at the ends. By a straightforward
integration of the Biot–Savart law for the magnetic field produced
by a current element, and the expression for the force on a current
element in a magnetic field, one can show that the magnitude of
the magnetic force per unit length, FM�x , t�, at point x and at time
t is

FM�x,t� = �I�t��2�1/40r���L − x�/��r2 + �L − x�2�1/2 + �L + t + x�/��r2

+ �L + t + x�2�1/2� �3�

where the unit of this “linear force density” is N/m and its direc-
tion is as shown in Fig. 2. The parameters r, t, and L are the
separation, shuttle width, and the length of the leg. These are
80 �m, 10 �m, and 300 �m, respectively. Plotted in Fig. 5 is the
spatial factor in brackets, demonstrating how FM varies with po-
sition along the leg. It will be assumed in the following analysis
that r remains essentially constant, despite the vibrations of the
beam. If the amplitude of the vibrations were not negligible com-
pared to the separation r, Eq. �3� would not be valid, since it is

Fig. 3 Circuits used to implement the human body model „top…
and the machine model „bottom… of ESD

Fig. 4 Typical current wave forms for the human body model
and the machine model „from Ref. †9‡…

Fig. 5 Magnetic force per unit length per current squared ver-
sus position along a leg

998 / Vol. 74, SEPTEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



only true for parallel current elements.
Based on standard vibration theory, one can show that the re-

sponse of the leg to a distributed force, such as that in Eq. �3�, is
as follows �10�

Y�x,t� = �1/�A��m��m�x�/�m��
0

L

G�x���m�x��dx�

��
0

t

�I�t���2 sin��m�t − t���dt� �4�

In the absence of damping, this is an expression for the perpen-
dicular displacement of the leg at point and time t in terms of its
normal modes m. Y�x , t� is the displacement; � is the mass density
of the polysilicon �2330 kg/m3�; A is the cross-sectional area of
the leg �21�10−12 m2�; �m is the angular frequency of the mth
normal mode; �m�x� is the mth characteristic spatial function �or
eigenfunction� of the leg, normalized to 1; and G�x� is everything
in Eq. �3� not involving the current. The form of the functions
�m�x� is

�m�x� = Nm�cos�kmx� − cosh�kmx� + Qm�sin�kmx� − sinh�kmx���
�5�

where

Qm = �cos�cm� − cosh�cm��/�sinh�cm� − sin�cm�� �6�

km = cm/L �7�

and cm is determined from the eigenvalue condition that

cos�cm�cosh�cm� = 1 �8�

Nm is determined from the normalization condition that

�
0

L

��m�x��2 dx = 1 �9�

It turns out that all Nm are very close to 1/ 	L. In this calculation,
only the first five modes have been included in the sum. The
values of cm for m=1–5 are: 4.730, 7.853, 10.996, 14.137, and
17.279. A value of zero is also possible, but it results in zero for
its associated eigenfunction. It is clear from Eq. �8� that cm rapidly
approaches �m+1/2�� with increasing m. In fact, it is within a
fraction of a percent of that value even for m=1. The various
angular frequencies, �m, associated with the modes are given by

�m = bkm
2 �10�

where

b = �EI/�A�1/2 �11�

I is the moment of inertia associated with direction of motion
shown in Fig. 2. For the structure under consideration, I=22.3
�10−24 m4 and �A=48.9�10−9 kg/m. In addition, the Young’s
modulus, E=164 GPa for polysilicon in MEMS devices �11�.
These numbers yield 8.64�10−3 m2/s for b. In MHz, the angular
frequencies for the first five modes are: 2.15, 5.92, 11.6, 19.2, and
28.7. This means that the fundamental vibrational frequency,
�1 /2�, of a leg is about 342 kHz.

In order to determine the tensile stress at any point within the
leg, Y��x , t� must be obtained from Eq. �4� and multiplied by the
product of E and a distance, s, from the neutral surface. This
surface, which bisects the cross section, is shown in the lower half
of Fig. 2. The stress, 	�x ,s , t�, is then

	�x,s,t� = EY��x,t�s �12�

The points of maximum stress occur at the anchor points �x
=0,L� and at the top and bottom surfaces, which are farthest from
the neutral surface. Denoting the position of these points relative

to the neutral surface as �w /2�, the half-width of the leg, the
maximum stress is

	�0 or L,w/2,t� = EY��0 or L,t��w/2� �SCF� �13�
where a stress concentration factor �SCF� has been included at the
anchor points. In our case, the maximum value of �w /2� is
1.9 �m and the chosen SCF is 1.6. The calculated stress will have
to be compared at any time to the tensile strength of polysilicon.

Differentiating Eq. �5� twice with respect to x and evaluating it
at 0 or L gives us the spatial contribution to Y� �0 or L, w /2, t�.
Due to the symmetry or antisymmetry of the eigenfunctions with
respect to the center of the leg, the second derivatives of a given
mode are either equal to or are the negative of each other at the
two anchor points. This useful characteristic of the eigenfunctions
allows us to bypass concerns over numerical accuracy at x=L
discussed in Refs. �12,13�. In addition, since the second derivative
is proportional to km

2 , Eq. �10� tells us that ��m� �0� /�m� is inde-
pendent of the index m. Using this fact and Eq. �13�, one obtains
expressions for the stress at the two anchor points

	�0,w/2,t� = 1.36 � 105�mSmTm�t� GPa �14�
and

	�L,w/2,t� = 1.36 � 105�m�− 1�mSmTm�t� GPa �15�

where Sm and Tm�t� are the modal space and time integrals, re-
spectively, in Eq. �4�. The factor �−1�m appears in Eq. �15� be-
cause the sign of the second derivative at x=L alternates with the
mode.

Results of the Calculation. Figure 6 shows the result of the
stress calculation for the HBM, using Eqs. �1�, �14�, and �15�. As
stated earlier, the first five modes were included. In Fig. 6, V0
=6500 V, which is the highest voltage used in the ESD testing,
but the stress is still far below the nominal tensile strength of
polysilicon, or about 2 GPa. This result leads to the conclusion
that magnetic forces alone cannot explain the failure resulting
from HBM testing. On the other hand, the similar looking, but
much larger, results for the MM shown in Fig. 7 could explain
failure, particularly if the maximum tensile strength is somewhat
less than half of 2 GPa, due to the factors mentioned earlier. In
addition, normal dimensional variations in the legs could be in the
right direction to enhance the stress at the points of attachment.

It is of interest to observe the relative contributions from the
first five modes and determine whether or not the inclusion of
additional modes would have changed the conclusion. Figure 8�a�

Fig. 6 Time-dependent stress at the two ends of a leg for an
initial capacitor voltage of 6500 V „human body model…. This
curve scales with the square of the initial capacitor voltage.
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is a scaled plot of the maximum stress at x=0 versus the number
of modes, from one to five, for both HBM and MM. That is, aside
from a multiplication factor, it is the maximum value achieved in
time by the sum in Eq. �14�. The character of both sets of points is
the same: at least 2/3 of the stress is accounted for by the lowest-
order mode alone. Additional modes add to the stress both very
gradually and in larger steps, and both series are flattening out, as
they must for convergence. Other information is contained in Fig.
8�b�, in which the individual �scaled� values, TmSm, that contribute
to the sum for the HBM in Fig. 8�a� are plotted. It is noted how
they decay away with mode number in an oscillatory fashion, at
least up to m=5, thereby explaining the character of Fig. 8�a�. The
space integrals, Sm, are also plotted and exhibit a similar behavior,
except that they lie somewhat above TmSm, except for m=1 be-
cause all the points were scaled to be equal for that value. This
difference suggests that Tm is decaying with mode number. Figure
8�c� illustrates this decay explicitly for both HBM and MM. With
the following, one can see that these trends will continue, even at
an accelerated pace. Under the excellent assumptions that Cm
= �m+1/2�� and all Qm
−1, and the somewhat cruder assump-
tion that magnetic force is constant with x, one can prove that Sm
varies as 1 / �m+1/2� for odd m and is zero for even m. This
simplified function, appropriately scaled and labeled Simp.�Sm�, is
also plotted in Fig. 8�b�. It reproduces the essence of Sm quite
well. The time integral is expected to decay with modal angular
frequency, �m, because of the cancellation introduced by the fac-
tor, sin��m�t− t���, in Eq. �4�. It is also expected to do so in an
oscillatory manner because of the varying phase of the trigono-
metric functions appearing in the analytic expression for Tm �not
shown�. In addition, successive integration by parts of Tm results
in an asymptotic series for it whose lead term is �1/�m�. Thus,
aside from any oscillations, by Eq. �10�, Tm should decay with
mode number as 1/ �m+1/2�2 for large m. This trend is plotted
along with Tm in Fig. 8�c� for the first five modes. It is clear,
despite the decay in Tm, that “asymptopia” has not yet been
reached up to m=5. Nevertheless, for large m, TmSm is expected to
vary as 1/ �m+1/2�3. It is clear from the foregoing discussion that
adding more modes to the stress calculation will not change the
basic conclusion stated in the first paragraph of this section.

Thermal Expansion and Stress Amplification
We have seen that the magnetic attraction between the two pairs

of legs provides a possible explanation for the failure of the elec-
trothermal actuators under MM ESD testing and that it cannot
under HBM testing. However, this explanation does not include
the thermal expansion of the legs that takes place during this
process. Alone or in conjunction with the magnetic attraction, an

attempt will be made to demonstrate that it does provide a feasible
explanation for failure, under the assumption to be justified later,
that negligible motion of the shuttle occurs during this rapid ex-
cursion in temperature.

Fig. 7 Time-dependent stress at the two ends of a leg for an
initial capacitor voltage of 6500 V „machine model…. This curve
scales with the square of the initial capacitor voltage.

Fig. 8 „a… Maximum stress achieved at x=0 versus the number
of modes included in the calculation, for both HBM and MM; „b…
the product of integrals, TmSm used to calculate the stress in
Fig. 8„a… for the HBM versus mode number. Similarly for Sm
alone and a simplified calculation of Sm „Simp.„Sm…… illustrating
the basic dependence of Sm on mode number; and „c… time
integral, Tm, versus mode number for HBM and MM. Also, the
asymptotic behavior of Tm versus mode number „1/ „m+1/2…2

….
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As a result of resistive heating by the electric current, any leg
tends to expand. If it is constrained longitudinally by the shuttle
and bond pad, a compressive load develops within the leg. If this
load reaches a critical value, the leg will buckle even in the ab-
sence of any lateral force, such as the magnetic attraction dis-
cussed above. If the buckling condition is exceeded in the absence
of a lateral force, the initially straight leg can assume a sinusoidal
shape of finite amplitude, which can be determined from the ther-
mally induced change in length. Both the spatial frequency of the
sinusoid and the critical value depend on the boundary conditions.
Since the leg is assumed to be built in, the boundary conditions
are that its displacement and the derivative of its displacement are
zero at either end. Since the conditions are quite different, me-
chanically, the discussion will be divided into pre- and post-
buckling, including the effects of a lateral load. However, the
critical compressive load and associated thermal issues will be
considered first.

The Critical Compressive Load and Associated Thermal
Issues. As stated in Ref. �14�, the critical compressive load, Pcrit,
for a beam built in at both ends is given by the well-known Euler
formula

Pcrit = 4�2EI/L2 �16�

For a leg of the thermal actuator, this value is 1.6�10−3 N. The
compressive load, P0, generated by constrained thermal expansion
is, for small length changes, given by

P0 = EA
t = EA�L/L = EA�
300

T

��T��dT� �17�

where ��T� is the temperature-dependent linear thermal expansion
coefficient. Substituting Eq. �16� into Eq. �17�, one deduces that
criticality is reached when

�
300

T

��T��dT� = 4�2I/AL2 = 0.000466 �18�

In other words, if the beam expands in length by about 42/3 parts
per 10,000, criticality is reached. It is important to note that this
condition is for the nominal values of the various dimensions in
Fig. 2, several of which are raised to a power greater than one in
Eq. �18�. Thus, the inevitable manufacturing variations in those
dimensions could have a significant impact on failure, if criticality
is closely approached.

In order to determine whether criticality is reached or is closely
approached, assuming the nominal dimensions, the integral will
be performed for various elevated temperatures. A fit to the data
on single crystal silicon yields the following for ��T� �15�

��T� = 10−6�3.725 − 7.723 exp�− 0.00588T� + 0.0005548T�K−1

�19�
When the integral is performed to the melting temperature of
1688 K, the results displayed in Fig. 9 are obtained. The calcula-
tion indicates that criticality is reached at about 452 K �179°C�.
But, how hot is the leg likely to get during ESD testing?

The maximum achievable temperature can be obtained by as-
suming that all of the energy initially stored in the capacitor,
CV0

2 /2, goes into resistive heating. In the case of the HBM, about
17% of it is available for heating the legs of the thermal actuator,
since, for this circuit, the capacitor discharges through a 1500 �
resistor in series with the electrothermal actuator �4�. Its total
resistance is about 300 �. Only 25% of the remaining energy goes
into heating any one of the four legs. In the case of the MM, there
is essentially no external series resistor; thus, 25% of the total is
available to heat any of the four legs. As for radiation, a simple
estimate based on the surface area of the legs and an emissivity of
1 indicates that a negligible fraction of the total available electri-
cal energy is converted into this form during the microsecond, or

so, that is required for discharge. Thermal conduction during this
brief period is also assumed to be negligible because it is a rela-
tively slow process.

Thus, an upper limit to the temperature achievable during ESD
testing is obtained from

CV0
2/2 = m�

300

T

Cp�T��dT� �20�

where =0.0425 in the case of HBM and =0.25 in the case of
MM. The symbols m and Cp�T� are the mass of a leg and the heat
capacity per unit mass of polysilicon. Between room temperature
and its melting point, the heat capacity of silicon, in J / �kg K�, is
the following function of temperature �16�

Cp�T� = 843.6 + 0.1176T − 151.4 � 105T−2 �21�
The result is Fig. 10, which is a plot of the calculated temperature
rise versus the initial capacitor voltage for the two values of ca-
pacitance considered here. Considering the voltages used in the
ESD testing �4�, it appears inevitable that criticality was reached
for some of them.

One concern regarding the calculation of the maximum tem-
perature achievable is that at the higher voltages, particularly for
the MM, it predicts that the melt can be exceeded, even though no
evidence of melting was associated with ESD-induced failures.

Fig. 9 Integral of the linear thermal expansion coefficient from
300 K to some elevated temperature T

Fig. 10 Maximum achievable temperature of the thermal ac-
tuator during ESD testing versus initial voltage on the
capacitor
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This problem can be ameliorated by noting that the latent heat of
fusion for silicon is high enough that �1.4 times the energy re-
quired to elevate the silicon to the melting temperature is required
to melt it. The latent heat of fusion is �1.81 MJ/kg �17�, while
the energy required for elevation to the melt, obtained by integrat-
ing Eq. �21�, �1.29 MJ/kg. Thus, achieving its melting tempera-
ture and actually melting the silicon are quite different. It may be
asked if a dissipative mechanism such as thermal conduction may
have played a larger role in reducing the maximum achievable
temperature than originally thought. This is unlikely, in view of
the analysis of the transient temperature response of these actua-
tors by Lott et al. �18�. They have demonstrated that the relevant
thermal time constant varies from a significant fraction of a mil-
lisecond for devices in air to about 30 ms for devices in vacuum.
On the other hand, the possible existence of resistance in the
circuits not shown in Fig. 3 would have reduced the fraction of the
original energy available to heat the silicon. Furthermore, if melt-
ing did occur, the leg may have been in the liquid state for a short
enough time that shape changes were negligible. Resolving this
problem is impossible here, particularly because the current wave
forms were not recorded, but suffice it to say that when post-
buckling behavior is examined, temperatures up to the melt should
be considered.

Prebuckling. As the critical value of compression is ap-
proached in the presence of even a weak lateral force, small-
deflection theory predicts that the amplitude of the deflected beam
increases without limit �12�. Although small-deflection theory
cannot be considered accurate at large amplitudes, this prediction
might still lead one to expect that all of the legs will break if the
ESD heating brings them even close to the critical temperature of
452 K. However, many did not. The reason for this discrepancy is
that the first statement of this paragraph presupposes that the com-
pression is constant, regardless of the amplitude. This condition is
unattainable here; since the separation between the end points is
fixed, the compression is reduced when the beam is deflected
because it elongates in the process. Thus, as is now demonstrated,
even at the critical temperature, a self-consistent solution can be
found for which the deflection is finite.

In this discussion, small-deflection theory will be assumed and,
for simplicity, the lateral force per unit length, q, is spatially con-
stant. In view of Fig. 5, a uniform force is a reasonable assump-
tion. Regarding the accuracy of small-deflection theory, a simple
calculation assuming a uniform lateral force and zero compressive
force indicates that the nominal tensile stress of 2 GPa is reached
at the anchor points while small-deflection theory is still quite
accurate �i.e., all y�2�x��1, where y�x� is the deflection curve. In
fact, its maximum value in this example 
0.013�. In the presence
of both lateral and compressive forces, the differential equation
for the deflection of a long, slender beam, y�x�, is �12�

EI d4y/dx4 + Pc d2y/dx2 = q �22�

For the moment, the compressive force, Pc, is considered constant
and equal to P0, the compression at zero deflection. Placing the
origin of the coordinate system at its center, in anticipation of
symmetry, the beam extends over the range: –L/2 � x � L/2. For
any of the legs, L=300 �m. Since the beam is fixed at either end,
y�x�=y��x�=0 at x= ±L /2. Then the solution to Eq. �22� is

y�x� = �qL2/4P0U0 sin U0��cos 2U0x/L − cos U0� + �q/2P0��x2

− �L/2�2� �23�

where U0= �L /2�	 �P0 /EI�. Also defined is Uc= �L /2�	 �Pc /EI�,
for use later. Of particular interest is the second derivative at the
end points, y��±L /2�, because at these points the tensile stress
induced by flexure is proportional to it. The total tensile stress is
obtained by subtracting P0 /A, the overall compressive stress,
from this quantity. The maximum value of P0 /A occurs at the
critical compression, where it is 0.076 GPa, or 3.8% of the nomi-

nal tensile strength. From Eq. �23�, the second derivative at the
end points is

y��±L/2� = �qL2/12EI�X�U0� �24�
where

X�U0� = �3/U0
2��1 − U0/tan U0� �25�

The expression multiplying X�U0� in Eq. �24� is the second de-
rivative at zero compression. Thus, the second derivative at finite
compression is that at zero compression amplified by X�U0�. This
function is infinite at criticality, where U0=�, and it serves as the
basis for the statement made at the beginning of this section. It is
plotted in Fig. 11 as the curve labeled “constant compression.”
However, as stated above, the compression is not constant with
deflection. The actual compression, Pc, at a finite deflection is
given by

Pc = P0 − EA�/L �26�

where � is the change in length caused by the deflection. It is
given by

� =�
−L/2

L/2

	 �1 + y�2�x��dx − L 
 �1/2��
−L/2

L/2

y�2�x�dx �27�

with the approximation having been made in the spirit of small-
deflection theory. Using Eqs. �23� and �27�, the following is ob-
tained for Pc

Pc = �2/L�2EIUc
2 = P0 − �EAL6/256��q/EI�2��1/Uc

4��2/3 + csc2Uc

+ �3 cot Uc�/Uc − �2/Uc�2�� �28�
The solution of this equation yields a self-consistent value of the
compression in the deflected beam as a function of P0 and q,
along with the other parameters that characterize the geometry
and rigidity of the beam. The function in brackets is relatively flat
around Uc=0 and it →�, as Uc→�. It is similar in appearance to
X�U0�. The result of graphically solving for Pc as a function of P0
is shown in Fig. 11 for two values of q, conveniently chosen to be
illustrative of the point being made. Including the stress concen-
tration factor, they produce a flexural stress at the attachments

Fig. 11 Amplification factor, X„Uc… versus U0 for constant com-
pression, where Pc=P0, and for values of q that would produce
flexural stress at the end points of 7/40 and 1/40 the nominal
stress of silicon, according to simple beam theory and Pc=0.
For all q>0, Pc<P0. U0,c= „L /2…	 „P0,c /EI….
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points of �1/40 and �7/40 of the nominal tensile strength of the
silicon, assuming that Pc=0 in Eq. �22�. �The dynamic equivalent
was used to calculate the magnetic response earlier.� The curves
demonstrate that the actual compression at a given deflection is, as
expected, less than P0. One can also see from the dashed curve
that the lateral force can drive an originally compressed beam into
tension, where Pc�0, although that region is not shown. The
curves in Fig. 12 for these two cases illustrate the dramatic reduc-
tion in the amplification factor near buckling. This dramatic re-
duction suggests that thermal expansion below the critical tem-
perature will not greatly enhance the magnetic interaction as a
probable cause of fracture.

Postbuckling. The two curves in Fig. 12 could be smoothly
continued beyond the critical temperature, since the actual com-
pression of the beam, as determined by Eq. �28�, never reaches the
critical compression. However, this treatment predicts a deflection
of the beam that is zero when the lateral force is removed. This is
true below the critical temperature, but beyond it the beam will
begin to buckle and acquire a deflection even in the absence of a
lateral force. �Zero deflection is mathematical allowable, but is
physically unstable.� Thus, a discontinuity of sorts does occur at
the critical temperature. It is presumed, therefore, that the effects
of the lateral force can be superimposed on those caused by buck-
ling. Within small-deflection theory �12�, a buckled beam, built in
at both ends, has the following deflection for 0 �x�L

yb�x� = A�1 − cos 2�x/L� �29�

where the amplitude A is indeterminate for strictly mechanically
induced buckling. In addition, the compressive stress within the
buckled beam is pinned at the critical stress. In the case of ther-
mally induced buckling, the amplitude can be determined from the
length change beyond the critical temperature, Tc. In other words

� = L�
Tc

T

��T��dT� 
 �1/2��
0

L

yb�
2�x�dx = �1/L���A�2 �30�

Thus,

A 
 �L/�� 	 ��
Tc

T

��T��dT�� �31�

The maximum value of A occurs at 1688 K, the melting tempera-
ture. At that temperature, A
6.9 �m for L=300 �m, which re-
sults in a maximum value of yb�

2�x� of 0.021. Its small size com-

pared to unity justifies the use of small-deflection theory, post-
buckling. Including the stress concentration factor of 1.6 and the
overall compression of 0.076 GPa, the corresponding stress at the
anchor points is 
1.43 GPa, which is well within the range of the
estimated tensile strength of the silicon. Dimensional variations
among the actuators, some by accident and others by design, will
affect any numerical calculation of the critical temperature and the
stress. The additional magnetic contribution, particularly in the
case of the MM, could add nontrivially to any such result.

It was noted in Ref. �4� that devices subject to MM testing
tended to fail at lower voltages than those subjected to HBM
testing. The explanation that the higher current produced by MM
testing resulted in larger buckling amplitudes and larger magnetic
interactions can now be reasonably offered.

The discussion pertaining to buckling is valid for a static leg,
although the condition of ESD testing is dynamic. For example,
the fundamental, or dominant, frequency of vibration of the struc-
ture was stated earlier to be 342 KHz. Thus, its period is about
3 �s. However, this seemingly small time should be viewed rela-
tive to the transit time of a crack through the width of the leg
shown in the bottom half of Fig. 2. As discussed in Ref. �19�, the
terminal speed of crack propagation �0.38	�E /��. For the values
of silicon stated earlier, this speed �3.2�105 cm/s. Given that
the largest transverse dimension of the leg is 3.8 �, the transit
time straight through �1.2 ns. Since this number is 2500 times
smaller than the fundamental period of vibration, the leg can be
considered essentially fixed during this time, and the presence of a
few higher-order modes of lower amplitude has no material effect
on this conclusion. Thus, the static treatment should yield insight
into failure.

Residual Concerns

Eddy Currents. When the current pulse is applied to the legs,
eddy currents are induced in the polysilicon substrate a few mi-
crons below the bottom of the legs, but they have been ignored in
the analysis up to this point. Since they are of obvious concern,
certain general comments concerning these currents will be pre-
sented here, although their detailed study is beyond the scope of
this paper.

An expression, in the form of a rather complicated integral, for
the current density induced within a large conducting plate of
finite thickness below a long filamentary current has been derived
elsewhere �20�. The filament is presumed to be parallel to the
plate, as in Fig. 13�a�, and the current oscillates at a single fre-
quency. For a current pulse, such as that in Eqs. �1� and �2�, the
expression in Ref. �20� can be generalized by integrating it over
the frequency content of the pulse. For a continuous current dis-
tribution within an actual wire, the same expression can be gen-
eralized by integrating it over the cross section of the wire, such
as the leg in the bottom of Fig. 2. However, this additional analy-
sis is beyond the scope of this paper. In what follows, therefore,
the results for a filamentary current oscillating at a single fre-
quency will be considered sufficient.

The induced current density within the plate is parallel to the
filament and is obviously symmetric about a plane perpendicular
to the plate and passing through the filament. Thus, the force that
these eddy currents exert on the filament is perpendicular to the
plane of the plate and, therefore, perpendicular to the in-plane
motion that has been assumed throughout this paper. Thus, for
deflections which are not large, the magnetic force exerted on a
given leg caused by a neighboring leg can be treated indepen-
dently of the force exerted on that same leg by its own eddy
currents. However, a little thought will show that the tensile stress
near an anchor point caused by the in-plane motion can be en-
hanced or diminished by this perpendicular motion.

It is now argued that the effect of the eddy currents is small
compared to that of the other leg, although it is done only quali-
tatively. First, consider the distribution of the eddy current density

Fig. 12 Pc versus P0 for the two values of q in Fig. 11
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within the plate. Its variation throughout the thickness of the plate
is largely determined by the skin depth, which is the �1/e� point of
an exponentially decaying electromagnetic field of a given fre-
quency within a conductor. Now, the thickness of the polysilicon
substrate is about 5 /8 mm. Given the dominant frequencies in the
ESD pulses in Eqs. �1� and �2� and the resistivity of the
phosphorus-doped, polysilicon substrate ��8 � cm�, one can
show that the skin depth is much greater than this thickness. Thus,
the induced current is essentially constant throughout the thick-
ness of the substrate, which is more than six times the separation
between the legs. This variation is shown qualitatively in Fig.
13�b�. In addition, the lateral �i.e., parallel to the plate surface�
distribution of current density is very wide, as suggested by cer-
tain examples in Ref. �20�. As shown in Fig. 13�b�, it has a peak
below the filament, decays slowly to zero with distance on either
side, and likely extends beyond the second leg. The point is that
the wide distribution of eddy currents implies that much of the
contribution to the force on the leg is from current elements much
farther away than the second leg. Thus, those contributions are
expected to be relatively weak. In addition, it is only their vertical
component that is of importance, as implied earlier. Furthermore,
the phase of the eddy currents is spatially varying; therefore, some
cancellation will occur from element to element. Finally, the
beams were designed so as to resist out-of-plane motion: the ver-
tical cross-sectional moment of inertia of the beam in Fig. 2 is 4.3
times its horizontal moment of inertia.

Motion of the Shuttle During the ESD Pulse. The analysis
has presupposed essentially no upward motion of the shuttle dur-
ing the ESD pulse, as it would in normal operation. This is im-
portant because substantial motion in that direction would relieve
the tendency to buckle. In order to justify this assumption, the
resonant frequencies of the system in Fig. 2 consisting of 600 �m
legs and a point mass M in the center equal to that of the shuttle
have been calculated. The legs are assumed to be built in at either
end. Only the spatially symmetric modes of the “shuttleless” sys-
tem, such as the fundamental, are affected by the shuttle; their
frequency is lowered, but they remain symmetric. The antisym-
metric modes have a node at the center point, where the additional
inertia has no influence on their behavior. Utilizing symmetry, the
boundary conditions on the displacement, Y�x , t�, are

Y�x,t� = Y��x,t� = 0;

x = 02EIY��x,t� = M d2Y�x,t�/dt2

= − M�m
2 Y�x,t�; x = L/2 �32�

In these equations, the origin is now at the left bond pad in Fig. 2
and x=L=600 �m is at the right bond pad. The first expresses the
fixity condition at the left bond pad; the second is Newton’s sec-
ond law as applied to the point mass M under the combined action
of the shear forces on either side of it. The mass and beam are
assumed to be oscillating with modal angular frequency, �m. The
resulting eigenvalue equation leading to �m is now

�cos�cm�sinh�cm� + cosh�cm�sin�cm/2��/��cm��1 − cos�cm�cosh�cm��

= R �33�

where, in contrast to Eq. �7�, cm=kmL /2, but Eq. �10� is un-
changed. The quantity R is the ratio of the point mass to that of
the entire beam. When R=0, one can readily show, as one must,
that Eq. �33� can be manipulated into the form of Eq. �8�. Using
the typical value of R, 0.23, it is found that the fundamental vi-
brational frequency, �1 /2�, of the “shuttled” system is 67.6 kHz,
and the first higher-order frequency of the symmetric modes is
404 kHz. All but the fundamental mode have vibrational nodes.
Considering what the system would look like with a displaced
shuttle, it reasonable to assume that the fundamental mode would
dominate, as it did in the magnetic analysis. Then the motion of
the shuttle can be considered extremely sluggish on the time scale
of the ESD pulses ��200 ns�.

Summary
Two mechanisms have been postulated to explain the failure of

electrothermal actuators during ESD testing: magnetic attraction
between pairs of legs and resistive heating of the legs. An analysis
of the magnetic attraction reveals that it can cause failure only
near the highest currents generated by the tests. A modest ampli-
fication of the magnetic effects is achieved by thermally induced
compression in the legs prior to buckling. Failure can readily be
explained by resistive heating of the legs beyond the buckling
temperature, the effects of which are added to the magnetic inter-

Fig. 13 „a… Geometry of eddy current discussion; and „b… Eddy current versus vertical and horizontal dis-
tances from the filament
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action. The analysis presented here presupposes essentially no
bulk motion of the shuttle during the brief period of the ESD
current and the negligible effect of eddy currents induced in the
substrate during the same period. Arguments have been presented
justifying these assumptions.
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A One-Dimensional Theory for the
Analysis of Strip Surface Acoustic
Waveguides
In this paper, an effective and new one-dimensional theory for the analysis of strip
surface acoustic waveguides is presented. Compared with the known methods, a promi-
nent advantage of this method proposed in this paper is that all the field variables can be
calculated. �DOI: 10.1115/1.2723815�

Keywords: strip surface acoustic waveguides, eigenmodes, Mindlin plate theory, disper-
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1 Introduction
Because of their excellent properties to confine acoustic waves,

strip surface acoustic waveguides are important components in
some acoustic devices, such as acousto-optic �AO� polarization
converters �1� and AO tunable filters �2� in wavelength division
multiplexing optical communication systems.

It is very important for the design of the acoustic devices to
accurately model these waveguides. Some approximate methods
have been established in previously published papers. For ex-
ample, a scalar potential method �SPM� �3� was proposed. Draw-
backs of this method are twofold: one is that only scalar potential
is considered in the calculation of the eigenmodes, and the vector
potential is ignored, thus it is impossible to obtain the field distri-
bution; the other is that it is only valid for isotropic materials.
Lately an effective index method �EIM� �4� can be regarded as a
generalization of the SPM for anisotropic materials, and in this
method only a single component of the elastic displacements is
considered in the calculation. Although this method is simple, it is
subject to some drawbacks, such as its low precision and the
impossibility to calculate the field distribution. There is also an-
other theory �5�, which is completely different from the SPM and
the EIM, and is based on the microwave equivalent network for-
mulation �MENF� �5�. A drawback of the MENF is that the field
distribution cannot be obtained by this method.

In this paper, a new and effective one-dimensional theory for
the analysis of strip surface acoustic waveguides is presented. It is
based on a two-dimensional theory �6� for the surface acoustic
wave �SAW� propagation in a semi-infinite solid, where from the
general Mindlin plate theory �7� Wang and his co-workers derived
the two-dimensional theory for SAWs near the surface of a semi-
infinite solid without the discontinuities of mechanical boundary
conditions. Compared with the work of Wang et al., our contribu-
tions are as follows: �1� The real number variation formulation in
the paper �6� is replaced by the complex variation formulation in
our paper. The advantage of the complex formulation is obvious,
which avoids the complex expression of the egienmodes; �2� The
discontinuities of the mechanical boundary conditions on the sur-
face are considered fully, which enables the two-dimensional
SAW theory to be used for the design of practical devices; and �3�
The mass loaded effect is also investigated generally. Compared
with the SPM, EIM, and MENF, a prominent advantage of the
method is: the field distribution of the eigenmodes can be calcu-
lated by our proposed method, and this is very important in the
design of some acoustic devices.

2 Theory Formulation
A section of a strip surface acoustic waveguide is shown in Fig.

1, where the anisotropic solid occupies the semi-infinite space
x1�0, the thickness, and the width of the film are h and 2w,
respectively; and the other region is free space.

2.1 A One-Dimensional Theory for SAWs on a Semi-
Infinite Anisotropic Solid With a Uniform Surface. The three-
dimensional field equations in anisotropic solid materials are

Tij,j − �üi = 0 �1�

The stress tensor Tij can be expressed as

Tij = cijkluk,l �2�

Here uj and cijkl denote the elastic displacement vector and the
elastic tensor, respectively; and � is the mass density.

Provided that the anisotropic solid is infinite in the x1 and x2
directions, finite in the x3 direction, and assuming that the SAW
propagates in the x2 direction, all the field variables have a com-
mon factor exp�Kx2�, which will be omitted hereafter. The elastic
displacements can be expressed as

ui�x1,x3� = �
m=1

3

ui
�m��x3�exp��mx1� �3�

where K is a pure imaginary wave vector in the x2 direction; and
�m �m=1,2 ,3� are complex numbers with positive real parts,
which are from the eigensolutions for a infinite anisotropic solid
and express approximately the attenuation behavior of the SAWs
in the depth direction in the finite structure. In other words,
�i�m , iK ,0� is the wave vector for the infinite case, and the waves
are inhomogeneous in the x1 direction. Because only monochro-
matic waves are studied in the paper, all field variables have a
common factor exp�i�t�, which will be omitted hereafter. Here �
denotes the angular frequency of the waves.

According to the complex variation principle �8�, the following
variation equation is listed

� �
�

� ��Tij,j + ��2ui��ui
*�dx1 dx2 dx3 = 0 �4�

where � denotes the space occupied by the anisotropic solid,
which is finite in the x3 direction.

The integral regarding x2 is a constant, and it can be dropped
from Eq. �4�
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� dx3�
−�

0

dx1�Tij�,j� + ��2ui + Ti1,1��ui
* = 0 �5�

here j�=2,3 and �2�K. The following equation is obvious

��
−�

0

dx1 Ti1,1�ui
* = Ti1�ui

*�−�
0 −�

−�

0

dx1 Ti1��1�ui
*�

= Ti1�0��ui
*�0� −�

−�

0

dx1 Ti1��1�ui
*� �6�

where boundary conditions ui�x1=−� �=0 are used.
Submitting expression �6� into Eq. �5� yields

� dx3�
−�

0

dx1��Tij�,j� + ��2ui��ui
* − Ti1�1ui

*� +� dx3 Ti1�0��ui
*�0�

= 0 �7�
Submitting expression �3� into Eq. �7� and completing the inte-

gral calculation regarding x1 yields the following one-dimensional
equations

�
n=1

3 � dx3�
m=1

3

��T̄ij�,j�
�m� − �n

*T̄i1
�m� + ��2ui

�m��Amn + T̄i1
�m���ui

�n�*
= 0

�8�
Here

Amn =�
−�

0

dx1 exp���m + �n
*�x1� = 1/��n

* + �m�

and

T̄ij
�m� = cijkluk,l

�m��x3� �9�

In Eqs. �8� and �9�, the algorithm of the derivatives are: uj,1
�m�

��muj
�m��x3�, uj,2

�m��Kuj
�m��x3�, and uj,3

�m��� j
�m��x3� /�x3. The algo-

rithm is also adopted for T̄
ij�,j�
�m�

.

Because in Eq. �8� �ui
�n�*

are independent, the following equa-
tions can be derived from Eq. �8�

�
m=1

3

��T̄ij�,j�
�m� − �n

*T̄i1
�m� + ��2ui

�m��Amn + T̄i1
�m��

= 0; �i,n = 1,2,3, j� = 2,3� �10�

Here �m=1
3 T̄i1

�m� are the normal stresses on the surface x1=0.
Now Eq. �10� is a one-dimensional field equation without con-

sidering the boundary conditions at the surface x1=0.

2.2 Boundary Conditions for the One-Dimensional Theory
for SAWs
.

2.2.1 The Boundary Conditions for a Surface Without Mass
Loaded Effect. For a surface without mass loaded effect, the trac-
tion free boundary conditions on the surface are

T1j = �
m=1

3

T̄1j
�m� = 0, �j = 1,2,3� �11�

Submitting Eq. �11� into Eq. �10� yields the following one-
dimensional field equations

�
m=1

3

��T̄ij�,j�
�m� − �n

*T̄i1
�m� + ��2ui

�m��Amn� = 0, �i,n = 1,2,3; j� = 2,3�

�12�

It is worth indicating that Eq. �12� includes the boundary condi-
tions on the surface.

2.2.2 The Boundary Conditions for a Surface With Mass
Loaded Effect. Provided that the surface is covered by an aniso-
tropic solid film with thickness h, some difficulties will arise. It is
fortunate that by turning to the approximate theory �9,10� for the
wave propagation in an infinite plate covered by a film the diffi-
culties can be overcome. In this paper the approximate theory will
be generalized for studying a finite structure and the validity of
the approximate theory will be investigated as well.

The field equations in the film are

T̃ij,j + �̃�2ũi = 0 �13�

The components of the stress tensor T̃ in the film are

T̃ij = c̃ijklũk,l �14�

where a variable with a symbol 	 on it implies that the variable is
defined in the film.

Due to the traction free boundary conditions T̃1j�h�=0 on the
top surface of the film �x1=h�, the traction continuous boundary
conditions at the interface x1=0 can be expressed as

T1j�0� = T̃1j�0� − T̃1j�h� = T̃1j�0� − �T̃1j�0� + T̃1j,1�0�h

+ �1/2�T̃1j,11�0�h2 + ��h3�� �15�

because the thickness of the film is very small, so higher-order
terms in Eq. �15� can be dropped. Thus Eq. �15� can be expressed
as

T̃1j�0� = − T̃1j,1�0�h �16�
From Eq. �13�, the following equation is derived

T̃j1,1 + KT̃j2 + T̃j3,3 + �̃�2ũj = 0 �17�

Because practical waveguides are generally single mode
waveguides, the module of the component of the wave vector in
the x3 direction is small and can be ignored compared with the
module of K, which will be called single mode waveguide ap-

proximation hereafter. So the T̃j3,3 term in Eq. �17� can be ig-
nored. Thus Eq. �17� can be rewritten as

T̃1j,1 + KT̃2j = − �̃�2ũj �18�
After carrying out similar approximate procedures from Eq.

�14�, the following equations can be derived

T̃1j = c̃1jk1ũk,1 + Kc̃1jk2ũk, �j = 1,2,3� �19�

T̃1j,1 = c̃1jk1ũk,11 + Kc̃1jk2ũk,1, �j = 1,2,3� �20�

T̃2j = c̃2jk1ũk,1 + Kc̃2jk2ũk, �j = 1,2,3� �21�
Submitting Eqs. �20� and �21� into Eq. �18� yields

c̃1jk1ũk,11 + Kc̃1jk2ũk,1 + Kc̃2jk1ũk,1

= − �̃�2ũj − K2c̃2jk2ũk, �j = 1,2,3� �22�
Equations �22� and �19� can be rewritten as a matrix equation as

Fig. 1 A section of a strip surface acoustic waveguide
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A�K�X = B��,K�Y �23�

where A�K� and B�� ,K� are 6�6 matrices, X= �ũ1,11 ,

ũ2,11 , ũ3,11 , ũ1,1 , ũ2,1 , ũ3,1�T, and Y = �T̃11, T̃12, T̃13, ũ1 , ũ2 , ũ3�T. The
expressions of the matrices A�K� and B�� ,K� can be derived eas-
ily and directly, and they are not listed here.

From Eq. �23�, the following expression is derived

X = A−1�K�B��,K�Y �24�

From Eqs. �20� and �24�, it is detected that the T̃1j,1 have the
following forms

T̃1j,1 = f j�T̃11,T̃12,T̃13, ũ1, ũ2, ũ3� �25�

Now submitting Eq. �25� to Eq. �16� and considering the continu-
ous boundary conditions of the elastic displacement and the nor-
mal stresses yields

T1j�0� = − hf j�T11,T12,T13,u1,u2,u3�, �x1 = 0� �26�
Equation �26� can be rewritten as follows

T1j�0� = gj�u1�0�,u2�0�,u3�0�� �27�

Equation �27� denotes the mechanical boundary conditions at the
interface x1=0.

Submitting Eq. �27� to Eq. �10� yields

�
m=1

3

��T̄ij�,j�
�m� − �n

*T̄i1
�m� + ��2ui

�m��Amn + gi
�m��

= 0, �i,n = 1,2,3; j� = 2,3� �28�

It is also worth indicating that Eq. �28� includes all the boundary
conditions on the interface.

2.2.3 The Solution of the Eignmode Problem of a Strip Sur-
face Acoustic Waveguide. A section of a strip surface acoustic
waveguide is shown in Fig. 1.

The field variables in the nonmass-loaded regions can be de-
rived from Eq. �12�. Assuming all the field variables have the
form: u	

�m��x3�=u	
�m� exp�
x3�, 	=1,2 ,3, a matrix eigenequation

can be derived from Eq. �12�, and it is expressed as


2CY + 
DY + EY = 0 �29�

Here C, D, and E are 9�9 matrices, and their components can be
expressed as

C3�n−1�+i,3�m−1�+j = Amnci3j3

D3�n−1�+i,3�m−1�+j = Amn�ci2j3K + ci3j1�m + ci3j2K − �n
*ci1j3� + ci1j3

E3�n−1�+i,3�m−1�+j = Amn�ci2j1K�m + ci2j2K2 − ci1j1�n
*�m − ci1j2�n

*K

+ ��2�ij� + ci1j1�m + ci1j2K

Here j=1,2 ,3. Y is a 9�1 vector, and Y
= �u1

�1� ,u2
�1� ,u3

�1� , . . . ,u1
�3� ,u2

�3� ,u3
�3��T, where u	

�m� are unknown con-
stants to be determined.

The solution of Eq. �29� is well known, and it is not described
here. From Eq. �29�, the eigenvalues and eigenvectors can be
obtained: The eigenvalues with positive real parts are:

1 ,
2 , . . . ,
9, and the corresponding eigenvectors are:
Y�1� ,Y�2� , . . . ,Y�9�. The eigenvalues with negative real parts are:

10,
11, . . . ,
18, and the corresponding eigenvectors are:
Y�10� ,Y�11� , . . . ,Y�18�.

For the x3�w region, the field variables can be expressed as:
u	

�m��x3�=�L=1
9 HL+9 exp��L+9x3�Y	+3m−3

�L+9� . For the x3−w region,
the field variables can be expressed as: u	

�m��x3�
=�L=1

9 HL exp��Lx3�Y	+3m−3
�L� . Here HL �L=1,2 . . . ,18� are un-

known constants to be determined, and Y j
�L� denotes the jth com-

ponent of the Lth eigenvector.
According to a similar method, the field variables in the mass-

loaded region can be derived from Eq. �28�. Assuming all the field
variables have the form: u	

�m��x3�=u	
�m� exp�
̄x3�, a matrix

eigenequation can also be derived from Eq. �28�, and it is ex-
pressed as


̄2C̄Ȳ + 
̄D̄Ȳ + ĒȲ = 0 �30�

where C̄, D̄, and Ē are 9�9 matrices; Ȳ is a 9�1 vector; and

Ȳ = �u1
�1� ,u2

�1� ,u3
�1� , . . . ,u1

�3� ,u2
�3� ,u3

�3��T.
The eigenvalues of Eq. �30� are: 
̄1 , 
̄2 , . . . , 
̄18, and the corre-

sponding eigenvectors are: Ȳ�1� , Ȳ�2� , . . . , Ȳ�18�. The field variables
in the −wx3w region can be expressed as: u	

�m��x3�
=�L=1

18 H̄L exp��̄Lx3�Ȳ	+3m−3
�L� . Here H̄L �L=1,2 , . . . ,18� are un-

known constants to be determined.
In order to obtain the characteristics of the eigenmodes, some

additional boundary conditions must be introduced. They are: the
u	

�m��x3� and u	,3
�m��x3� must be continuous at x3= ±w. The number

of the continuous conditions is 36. They result in a matrix
equation

P��,K�Q = 0 �31�

where P�� ,K� is a 36�36 matrix; Q is a 36�1 vector; and Q

= �H1 , . . . ,H18, H̄1 , . . . , H̄18�T. In order to get a nontrivial solution,
the determinant of the matrix P must be zero, i.e.

det�P��,K�� = 0 �32�
Equation �32� is the dispersion equation of the strip surface

waveguide. The phase velocity and the field distribution of the
eigenmodes can be obtained from Eq. �32�.

3 Some Numerical Examples and the Comparison
With Other Methods

In order to check the precision of the approximate boundary
conditions �Eq. �27�� and the validity of Eq. �28�, the relationship
between the phase velocity of SAWs and the thickness–frequency
product in a SiO2/Si structure, where the film SiO2 is infinite in
the x2 and x3 directions, is investigated by the rigid method �11�
and the approximate method �i.e., Eq. �28��. The computation re-
sults are shown in Fig. 2. In the figure the dot and solid lines
denote the curves calculated by the rigid and approximate meth-
ods, respectively. It is detected that the precision of the approxi-

Fig. 2 The relationship between the phase velocity of SAWs
and the thickness–frequency product in a SiO2/Si structure,
where the film SiO2 is infinite in the x2 and x3 directions

1008 / Vol. 74, SEPTEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



mate boundary conditions �Eq. �27�� is enough for the practical
range of hf , such as hf 200 Hz m, where f denotes the fre-
quency of the waves. For obtaining higher precision, high-order
terms in Eq. �15� must also be considered and it is obvious that
Eq. �28� is valid for uniform multilayered structures.

The relationship between the phase velocity of the eigenmodes
in the strip waveguide �SiO2/Si� structure and the half-width of
the strip w is shown in Fig. 3. In Fig. 3 the dot and solid lines
denote the curves calculated by the EIM and the method proposed
in this paper, respectively. It is detected that the results obtained
from the two methods are consilient. A slight larger difference
between the two methods is observed for the second mode, which
may be resulted from the single mode waveguide approximation
or the error of the EIM. It may be worth studying in more detail in
the future.

The field distribution of the first and second eigenmodes is
shown in Figs. 4–7. Because u3 is almost zero anywhere for the
first and second eigenmodes, it is not shown in the figures. From
these figures, we can observe the following results: �1� the first
mode is symmetric, and the second mode is antisymmetric; and
�2� although there is the uncontinuity of mechanical boundary

conditions, the elastic displacement component u3 is small and
can be ignored. In other words, the waves in the waveguides are
Rayleigh waves.

In the numerical calculation, all the material parameters are
taken from the literature �12�.

Fig. 3 The eigenmodes in the strip waveguide „SiO2/Si… struc-
ture, where the thickness of the film SiO2 is h=0.25 �m, and the
frequency of waves is f=� /2�=0.17 GHz

Fig. 4 The relative amplitude of u1 of the first mode, where h
=0.25 �m, w=120 �m, and f=0.17 GHz

Fig. 5 The relative amplitude of u2 of the first mode, where h
=0.25 �m, w=120 �m, and f=0.17 GHz

Fig. 6 The relative amplitude of u1 of the second mode, where
h=0.25 �m, w=120 �m, and f=0.17 GHz

Fig. 7 The relative amplitude of u2 of the second mode, where
h=0.25 �m, w=120 �m, and f=0.17 GHz
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4 Conclusions
In this paper, a new and effective one-dimensional theory for

studying characteristics of SAWs in strip waveguides is presented.
The prominent advantage is that the field distribution can be cal-
culated, and this is very important for the design of some acoustic
devices.
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Series Solution of Three-
Dimensional Unsteady Laminar
Viscous Flow Due to a Stretching
Surface in a Rotating Fluid
An analytic technique, namely the homotopy analysis method, is applied to solve the
Navier–Stokes equations governing unsteady viscous flows due to a suddenly stretching
surface in a rotating fluid. Unlike perturbation methods, the current approach does not
depend upon any small parameters at all. Besides contrary to all other analytic tech-
niques, it provides us with a simple way to ensure the convergence of solution series. In
contrast to perturbation approximations which have about 40% average errors for the
considered problem, our series solutions agree well with numerical results in the whole
time region 0� t� +�. Explicit analytic expressions of the skin friction coefficients are
given, which agree well with numerical results in the whole time region 0� t� +�. This
analytic approach can be applied to solve some complicated three-dimensional unsteady
viscous flows governed by the Navier–Stokes equations. �DOI: 10.1115/1.2723816�

Keywords: unsteady, Navier–Stokes equation, series solution, rotating fluid, homotopy
analysis method

1 Introduction
The flow of a rotating fluid past a stretching surface is encoun-

tered in many technical and industrial applications which include
the cooling of an infinite metallic plate in a cooling bath, the
boundary layer along material handling conveyers, the aerody-
namic extrusion of plastic sheets, the boundary layer along a liq-
uid film and condensation processes, the cooling and drying of
paper and textiles, the glass filer production, etc. In particular, in
extrusion of a polymer in a melt-spinning process, the extrusion
from the die is generally drawn and simultaneously stretched into
a sheet, which is then solidified throughout quenching or gradual
cooling by direct contact with water.

Wang �1� first considered the two-dimensional stretching of a
surface in a rotating fluid. However, relatively little work has been
done on unsteady boundary layer flow due to impulsive starting
from rest of a stretching sheet in a viscous fluid �2,3�. Nazar et al.
�4� solved the unsteady boundary layer flows due to a stretching
surface in a rotating fluid by means of both the Keller-box nu-
merical method �5� and the perturbation technique. However, the
perturbation approximations given by Nazar et al. �4� have about
40% average error, and are not accurate enough in the whole time
region, as shown in Figs. 4 and 5. Besides, it becomes more and
more difficult to get higher-order perturbation approximations.
This is mainly because perturbation techniques depend too
strongly upon small parameters.

An analytical method for strongly nonlinear problems, namely
the homotopy analysis method �HAM� �6–11�, has been devel-
oped since 1992. In contrast to perturbation techniques, the homo-
topy analysis method is independent of any small parameters at
all. Besides, it provides us with a simple way to ensure the con-
vergence of the solution series, so that we can always get accurate
enough approximations. Furthermore, it provides us with freedom
to choose better basis functions to approximate nonlinear prob-
lems. Finally, as proved by Liao �7,9�, the homotopy analysis

method logically contains the so-called nonperturbation methods
such as Lyapunov’s artificial small parameter method, the
�-expansion method, and Adomian’s decomposition method. Us-
ing the relationship between the homotopy analysis method and
Adomian’s decomposition method, Allan �12� investigated the ac-
curacy of approximations given by the Adomian’s decomposition
method. Currently, Hayat et al. �13�, Sajid et al. �14�, and Ab-
basbandy �15,16� pointed out that the so-called “homotopy pertur-
bation method” �17� proposed in 1999 is also a special case of the
homotopy analysis method �6,7� propounded in 1992. Thus, the
homotopy analysis method is rather general. The homotopy analy-
sis method has been successfully applied to many nonlinear prob-
lems in science and engineering, such as the similarity boundary-
layer flows �9,18–21�, nonlinear heat transfer �15�, nonlinear
evaluation equations �22�, nonlinear waves �16�, viscous flows of
non-Newtonian fluid �13,14,23,24�, Thomas–Fermi atom model
�7�, Volterra’s population model �7�, etc. It has been applied in
many fields of research. For example, Zhu �25,26� applied the
HAM to give, for the first time, an explicit series solution of the
famous Black–Scholes type equation in finance for American put
option, which is a system of nonlinear partial differential equa-
tions �PDEs� with an unknown moving boundary. Besides, the
HAM has been successfully applied to solve some PDEs in fluid
mechanics and heat transfer, such as the unsteady boundary-layer
viscous flows �10�, the unsteady nonlinear heat transfer problem
�27�, etc. In this paper, we further employ it to give much more
accurate analytic approximations �with less than 0.5% error in the
whole time region� of the unsteady nonlinear problem at hand.

2 Mathematical Description
Let �u ,v ,w� be the velocity components in the direction of

Cartesian axes �x ,y ,z�, respectively, with the axes rotating at an
angular velocity � in the z direction. Consider the unsteady
boundary-layer flows caused by a stretching surface at z=0 in a
rotating fluid. When t�0, the surface rotates at an angular veloc-
ity � in the z direction so that the fluid is at rest relative to the
surface. At time t=0, the surface at z=0 is impulsively stretched
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in the x direction. Due to the Coriolis force, the fluid motion is
three dimensional and is governed by the continuity equation and
the unsteady Navier–Stokes equations �4�

�u

�x
+

�v
�y

+
�w

�z
= 0 �1a�

�u

�t
+ u

�u

�x
+ v

�u

�y
+ w

�u

�z
− 2�v = −

1

�

�p

�x
+ ��2u �1b�

�v
�t

+ u
�v
�x

+ v
�v
�y

+ w
�v
�z

+ 2�u = −
1

�

�p

�y
+ ��2v �1c�

�w

�t
+ u

�w

�x
+ v

�w

�y
+ w

�w

�z
= −

1

�

�p

�z
+ ��2w �1d�

where p denotes the pressure; � the density; � the kinematic vis-
cosity; and �2 the three-dimensional Laplacian, respectively. The
initial and boundary conditions are

t � 0: u = v = w = 0 for any x,y,z �1e�

t � 0: u = ax, v = w = 0 at z = 0 �1f�

u → 0, v → 0, w → 0 as z → � �1g�

where the constant a �a	0, with the dimension of t−1� represents
the stretching rate.

Using Williams and Rhyne’s similarity transformation �28�


 = 1 − e−�, � = at �2�
and introducing the following similarity variables

� =� a

�

z, u = axf��
,��, v = axg�
,��, w = − �a�
f�
,��

�3�
Equations �1a�–�1d� become a system of two coupled nonlinear
differential equations

f� +
1

2
�1 − 
��f� + 
�f f� − f�2 + 2g� − 
�1 − 
�

� f�

�

= 0 �4a�

g� +
1

2
�1 − 
��g� + 
�fg� − f�g − 2f�� − 
�1 − 
�

�g

�

= 0

�4b�
where the prime denotes the derivation with respect to the simi-
larity variable �; and =� /a is a dimensionless parameter. The
corresponding boundary conditions read

f�
,0� = 0, f��
,0� = 1, f��
, + � � = 0,

g�
,0� = 0, g�
, + � � = 0 �4c�

Note that, as �→0, we have 
→�. Thus, �=�a /�
z is exactly the
same as the traditional definition given in Ref. �4�, which has
meanings as �→0.

According to the definitions �2� and �3�, we have the dimen-
sionless skin friction coefficient in the x and y directions

Cf
x = �
 Rex�−1/2f��
,0�, Cf

y = �
 Rex�−1/2g��
,0� �5�

where Rex=ax2 /� is the local Reynolds number.

3 Perturbation Approximations

3.1 Initial Solution as �\0. As 
→0, corresponding to the
initial flow, Eqs. �4a� and �4b� become

f� + 1
2�f� = 0 �6a�

g� + 1
2�g� = 0 �6b�

subject to the boundary/initial conditions

f�0,0� = 0, f��0,0� = 1, f��0, � � = 0,

g�0,0� = 0, g�0, � � = 0 �6c�

Its solution is given by

f�0,�� = � erfc��/2� +
2

��
�1 − e−�2/4� �7�

g�0,�� = 0 �8�

where erfc��� is the so-called complementary error function

erfc��� =
2

��
�

�

�

e−s2
ds �9�

Note that Eqs. �6a� and �6b� do not contain the parameter . Thus,
the result as 
→0 is independent of .

3.2 Steady Solution at �=1. At 
=1, corresponding to the
steady-state flow, Eqs. �4a� and �4b� read

f� + f f� − f�2 + 2g = 0 �10a�

g� + fg� − f�g − 2f� = 0 �10b�

subject to the same boundary and initial conditions as Eq. �6c�.
The steady-state boundary-layer flows were solved by Wang �1,2�.

3.3 Perturbation Approximations for Small �. Regarding 

as a small parameter, one has the perturbation expressions

f�
,�� = f̂0��� + f̂1���
 + f̂2���
2 + ¯ �11�

g�
,�� = ĝ0��� + ĝ1���
 + ĝ2���
2 + ¯ �12�

Substituting them into Eqs. �4a�–�4c� and equating the coefficients
of the like power of 
, one has the zero-order perturbation
equations

f̂0� + 1
2� f̂0� = 0 �13a�

ĝ0� + 1
2�ĝ0� = 0 �13b�

f̂0�0� = 0, f̂0��0� = 1, f̂0���� = 0, ĝ0�0� = 0, ĝ0��� = 0

�13c�

which are exactly the same as Eqs. �6a�–�6c�, respectively. The
first-order perturbation equations are given by

f̂1� + 1
2� f̂1� − f̂1� = 1

2� f̂0� − f̂0 f̂0� + f̂0�
2 �14a�

ĝ1� + 1
2�ĝ1� − ĝ1 = 2 f̂0� �14b�

f̂1�0� = 0, f̂1��0� = 0, f̂1���� = 0, ĝ1�0� = 0, ĝ1��� = 0

�14c�

Its solution reads

f̂1��� = �1

2
−

2

3�
�	�1 +

�2

2
�erfc��/2� −

1
��

�e−�2/4

−

1

2
�1 −

�2

2
�erfc2��/2� −

3

2��
�e−�2/4 erfc��/2� +

2

�
e−�2/2

−
1

��
�1

4
� +

4

3��
�e−�2/4 �15�
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ĝ1��� = �2 erfc��/2� −
2

��
�e−�2/4 �16�

In general, one can transfer the original nonlinear initial/
boundary-value problem into an infinite number of linear
boundary-value problems

L f
p�fm���� = Rm

p ���, Lg
p�gm���� = Gm

p ��� �17�

where the two linear operators L f
p and Lg

p are defined by

L f
p� =

�3�

��3 +
�

2

�2�

��2 −
��

��
�18�

Lg
p� =

�2�

��2 +
�

2

��

��
− � �19�

The common solutions of the linear equations

L f
p� = 0, Lg

p� = 0

are, respectively

� = C1 + C2�� +
�3

6
� + C3	4

3
exp�− �2/4��1 +

�2

4
� + �� erf��/2�

��� −
�3

6
�
 �20�

and

� = C1�1 +
�2

2
� + C2	� exp�− �2/4� + �� erf��/2��1 +

�2

2
�

�21�

where C1, C2, and C3 are integral constants. Note that the above
common solutions contain the error function erf�� /2� and are
rather complicated. Owing to this reason, it becomes more and
more difficult to get higher-order perturbation approximations. It
should be emphasized that these two linear operators L f

p and Lg
p

come directly from the original governing equations. Thus, the
perturbation method does not provides us with any freedom to
choose the linear operators of the linear subproblems.

The first-order perturbation approximation of the skin friction
coefficients reads

Cf
x Rex

1/2 � 
−1/2� f̂0��0� + 
 f̂1��0�� =
1

��
	− 
−1/2 + �−

7

4
+

4

3�
�
1/2


�22�

Cf
y Rex

1/2 � 
−1/2�ĝ0��0� + 
ĝ1��0�� = −
2

��

1/2 �23�

For details, please refer to Nazar et al. �4�. Note that, due to the
appearance of the error function erfc�� /2�, it becomes more and
more difficult to get higher-order perturbation approximations, as
mentioned above. Note that the perturbation approximation of
Cf

x Rex
1/2 is independent of . However, for large , these pertur-

bation approximations are not accurate, and would have about
40% average error, as shown in Figs. 4 and 5.

4 Homotopy Analytic Solution
In this part, we solve Eqs. �4a�–�4c� by means of the homotopy

analysis method �7,9�. First of all, it is well known that most of
boundary-layer flows decay exponentially at infinity �i.e., �→
+��. Thus, according to the boundary conditions �4c�, f� and g
decay to zero at infinity exponentially. Besides, Eqs. �4a� and �4b�
explicitly contain the terms 
 and �. Thus, f�
 ,�� and g�
 ,��
should be expressed by such a set of basis functions

�
k�m exp�− n��k � 0, m � 0,n � 0� �24�

in the following forms

f�
,�� = a0
0,0 + �

k=0

+�

�
m=0

+�

�
n=1

+�

ak
m,n
k�m exp�− n�� �25�

g�
,�� = �
k=0

+�

�
m=0

+�

�
n=1

+�

bk
m,n
k�m exp�− n�� �26�

where ak
m,n and bk

m,n are coefficients. Note that the solutions ex-
pressed in the above forms decay exponentially as �→ +�. As
shown later, the above expressions are important in the frame of
the homotopy analysis method for the choice of the initial guesses
and the auxiliary linear operators. The initial guesses and auxiliary
linear operators should be chosen in such a way that the approxi-
mations must be expressed by the above two expressions: this is
so important that it is called the rule of solution expressions �7,9�.

According to the solution expressions �25� and �26� and the
boundary conditions �4c�, it is straightforward to choose the initial
guesses

f0�
,�� = 1 − exp�− �� �27�

g0�
,�� = 0 �28�

Note that the above initial guesses satisfy the initial/boundary
conditions �4c�. Let L f and Lg denote two auxiliary linear opera-
tors, which we will determine later. Here, we note that we have
great freedom to choose L f and Lg. Based on Eqs. �4a� and �4b�,
we define the following two nonlinear operators

N f�F,G� =
�3F

��3 +
1

2
�1 − 
��

�2F

��2 − 
�1 − 
�
�2F

�
 � �
+ 
	F

�2F

��2

− � �F

��
�2

+ 2G� �29�

and

Ng�F,G� =
�2G

��2 +
1

2
�1 − 
��

�G

��
− 
�1 − 
�

�G

�

+ 
�F

�G

��
− G

�F

��

− 2
�F

��
� �30�

Then, we construct the so-called zero-order deformation equations

�1 − q��L f�F�
,�;q�� − L f�f0�
,���� = q�N f�F�
,�;q�,G�
,�;q��

�31a�

�1 − q��Lg�G�
,�;q�� − Lg�g0�
,���� = q�Ng�F�
,�;q�,G�
,�;q��

�31b�

subject to the corresponding boundary/initial conditions

F�
,0;q� = 0, � �F�
,�;q�
��

�
�=0

= 1, � �F�
,�;q�
��

�
�=�

= 0

�31c�

and

G�
,0;q� = 0, G�
, � ;q� = 0 �31d�

where q� �0,1� is the embedding parameter; � denotes a nonzero
auxiliary parameter; and F�
 ,� ;q� and G�
 ,� ;q� are unknown
functions related to f�
 ,�� and g�
 ,��, respectively.

When q=0, since the initial guesses f0�
 ,�� and g0�
 ,�� satisfy
the initial/boundary conditions �4c�, the above zero-order defor-
mation equations have the solution
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F�
,�;0� = f0�
,��, G�
,�;0� = g0�
,�� �32�

When q=1, since ��0, the above zero-order deformation equa-
tions are equivalent to the original Eqs. �4a�–�4c�, provided

F�
,�;1� = f�
,��, G�
,�;1� = g�
,�� �33�

respectively. Thus, as q increases from 0 to 1, F�
 ,� ;q� and
G�
 ,� ;q� vary �or deform� from the known initial guesses f0�
 ,��
and g0�
 ,�� to the unknown solutions f�
 ,�� and g�
 ,�� of the
original Eq. �4a�–�4c�, respectively. This is the reason why Eqs.
�31a�–�31d� are called zero-order deformation equations.

By Taylor’s theorem and using Eq. �32�, we have the power
series

F�
,�;q� = f0�
,�� + �
n=1

+�

fn�
,��qn �34�

G�
,�;q� = g0�
,�� + �
n=1

+�

gn�
,��qn �35�

where

fn�
,�� =
1

n!
� �nF�
,�;q�

�qn �
q=0

, gn�
,�� =
1

n!
� �nG�
,�;q�

�qn �
q=0

�36�

Note that Eqs. �31a� and �31b� contain the auxiliary parameter �.
Obviously, the convergence of the series �34� and �35� is depen-
dent not only upon the auxiliary linear operators L f and Lg but
also the auxiliary parameter �, and more importantly, we have
great freedom to choose all of them. Assuming that the auxiliary
parameter � and the auxiliary linear operators L f and Lg are so
properly chosen that the series �34� and �35� converge at q=1, we
have, using Eq. �33�, the solution series

f�
,�� = f0�
,�� + �
n=1

+�

fn�
,�� �37�

g�
,�� = g0�
,�� + �
n=1

+�

gn�
,�� �38�

The above series relates the initial guesses f0�
 ,�� and g0�
 ,��
with the exact solution f�
 ,�� and g�
 ,�� by means of the un-
known terms fn�
 ,�� and g0�
 ,��, where n=1,2 ,3 , . . .. According
to the fundamental theorem in calculus, the Taylor series �34� and
�35� are unique, and are completely determined by the zero-order
deformation Eqs. �31a�–�31d�. Thus, the governing equations and
boundary/initial conditions of fn�
 ,�� and gn�
 ,�� can be de-
duced directly from the zero-order deformation Eqs. �31a�–�31d�.
Based on the definition �36� and the solution series �37� and �38�,
Liao �7–11� provided a rather general approach to obtain the equa-
tions governing fn�
 ,�� and gn�
 ,��. For the sake of simplicity,
define the vectors

f�m = �f0, f1, f2, . . . , fm� �39�

g�m = �g0,g1,g2, . . . ,gm� �40�

Differentiating the zero-order deformation Eqs. �31a�–�31d� n
times with respect to the embedding parameter q, then setting q
=0, and finally dividing by n!, we have the so-called nth-order
deformation equation

L f�fn�
,�� − �nfn−1�
,��� = �Rn
f �f�n−1,g�n−1,
,�� �41a�

Lg�gn�
,�� − �ngn−1�
,��� = �Rn
g�f�n−1,g�n−1,
,�� �41b�

subject to the boundary/initial conditions

fn�
,0� = 0, � � fn�
,��
��

�
�=0

= 0, � � fn�
,��
��

�
n=�

= 0

�41c�
and

gn�
,0� = 0, gn�
, � � = 0 �41d�
where

Rn
f �f�n−1,g�n−1,
,�� =

�3fn−1

��3 +
1

2
�1 − 
��

�2fn−1

��2 − 
�1 − 
�
�2fn−1

�
 � �

+ 
	�
j=0

n−1 � fn−1−j

�2f j

��2 −
� fn−1−j

��

� f j

��
� + 2gn−1


�41e�
and

Rn
g�f�n−1,g�n−1,
,�� =

�2gn−1

��2 +
1

2
�1 − 
��

�gn−1

��
− 
�1 − 
�

�gn−1

�


+ 
	�
j=0

n−1 � fn−1−j

�gj

��
− gn−1−j

� f j

��
� − 2

� fn−1

�� 

�41f�

under the definition

�k = �0, k � 1

1, k 	 1
�42�

As proved by Sajid et al. �13� and Hayat et al. �14�, directly
substituting the series �34� and �35� into zero-order deformation
Eqs. �31a�–�31c�, and then equating the coefficients of the like
power of q, one can obtain exactly the same equations as Eqs.
�41a�–�41f�, no matter whether q is regarded as a small parameter
or not. This is mainly because the Taylor series �34� and �35� are
unique.

The original Eq. �4a� is third order with respect to the similarity
variable � and first order with respect to the dimensionless time 
,
and Eq. �4b� is second order with respect to � and first order with
respect to 
, respectively. In general, it is more difficult to solve
these kinds of combined initial-boundary-value problems than
pure boundary-value ones, even if they are linear. Fortunately, the
homotopy analysis method provides us with great freedom to
choose the auxiliary linear operators L f and Lg: we can choose L f
and Lg in such a way that the high-order deformation equations
are pure boundary-value ones. To do so, L f may be a third-order
linear differential operator with respect to �, and Lg a second-
order linear operator with respect to �, respectively. Therefore,
without loss of generality, we write

L f���
,��� =
�3�

��3 + A2���
�2�

��2 + A1���
��

��
+ A0���� �43�

and

Lg���
,��� =
�2�

��2 + B1���
��

��
+ B0���� �44�

where A0���, A1���, A2���, B0���, and B1��� are real functions to
be determined below. Let fn

*�
 ,�� and gn
*�
 ,�� denote the special

solution of Eqs. �41a�–�41d�. Its general solutions read

fn�
,�� = fn
*�
,�� + C1�
�e1

f ��� + C2�
�e2
f ��� + C3�
�e3

f ���
�45�

gn�
,�� = gn
*�
,�� + C4�
�e1

g��� + C5�
�e2
g��� �46�

where C1�
�, C2�
�, C3�
�, C4�
�, and C5�
� are integral constants
determined by the boundary conditions �41c� and �41d�, the real
functions e1

f ���, e2
f ���, e3

f ���, e1
g���, and e2

g��� are the so-called
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kernels of the two auxiliary linear operators, satisfying

L f�e1
f ���� = L f�e2

f ���� = L f�e3
f ���� = 0, �47�

Lg�e1
g���� = Lg�e2

g���� = 0

According to the solution expressions �25� and �26�, the kernels
should belong to the basis functions. If we choose e1

f ���, e2
f ���,

e3
f ��� as the first three simplest basis functions among �24�, i.e.

e1
f ��� = 1, e2

f ��� = exp�− ��, e3
f ��� = exp�− 2��

then, the boundary condition at infinity is automatically satisfied
and the coefficient C3�
� cannot be uniquely determined. To en-
sure that the high-order deformation equations have unique solu-
tions, we should choose

e1
f ��� = 1, e2

f ��� = exp�− ��, e3
f ��� = exp�+ ��

Then, to satisfy the boundary condition fn��
 , + � �=0, we have
C3�
�=0, and C1�
�, C2�
� are determined by the two boundary
conditions fn�
 ,0�=0 and fn��
 ,0�=0. Substituting the above ker-
nels into Eq. �47�, we have

A0��� = 0 �48�

− �1 + A1��� − A2����exp�− �� = 0 �49�

�1 + A1��� + A2����exp�+ �� = 0 �50�

which give

A0��� = A2��� = 0, A1��� = − 1

Similarly, choosing the kernels e1
g���=exp�−�� and e2

g���
=exp�+��, we have

B0��� = − 1, B1��� = 0

Thus, we have the two auxiliary linear operators

L f� =
�3�

��3 −
��

��
�51�

Lg� =
�2�

��2 − � �52�

which have the properties

L f�C1�
� exp�− �� + C2�
� exp�+ �� + C3�
�� = 0 �53�

Lg�C4�
� exp�− �� + C5�
� exp�+ ��� = 0 �54�

Note that, in contrast to perturbation approximations, our HAM
series solutions do not contain the error function erf�� /2�. This is
mainly because we have great freedom to choose the auxiliary
linear operators L f and Lg, which are much simpler than L f

p and
Lg

p appeared in the high-order perturbation Eqs. �14a� and �14b�,
respectively.

The high-order deformation Eqs. �41a�–�41d� are linear
boundary-value equations. Thus, according to Eqs. �37� and �38�,
the original nonlinear, combined initial-boundary-value problem
is transferred into an infinite number of linear boundary-value
problems. However, in contrast to perturbation techniques, this
kind of transformation does not need any small parameters. Be-
sides, in contrast to the perturbation method, the homotopy analy-
sis method provides us with great freedom to choose the auxiliary
linear operators L f and Lg. Using this kind of freedom, we can
obtain results at rather high order of approximations by means of
choosing the linear operators �51� and �52�, which are simpler
than �18� and �19�, and whose kernels do not contain the error
functions erf�� /2�.

5 Result Analysis

Liao �7� proved in general that, as long as a solution series
given by the homotopy analysis method converges, it must be one
of the solutions of the equation considered. Thus, it is important to
ensure that the HAM solution series are convergent. Note that the
solution series �37� and �38� contain one auxiliary parameter �. As
shown by Liao �7–11� and others �13–16,22�, it is the auxiliary
parameter � that provides us with a simple way to adjust and
control the convergence region of the solution series. In general,
by means of choosing a proper value of the auxiliary parameter �,
one can always ensure the convergence of the solution series
given by the homotopy analysis method. For example, let us con-
sider the case =1/2 for the nonlinear unsteady problem at hand.
First of all, we investigate the convergence of f��0,0� and g��0,0�
in the case of =1/2 by means of regarding � as a variable.
Physically, f��0,0� and g��0,0� are independent of the auxiliary
parameter �, and thus are unique. This is mainly because the
auxiliary parameter � has only mathematical meanings. Thus,
mathematically, as long as the series of f��0,0� and g��0,0� are
convergent, they must be convergent to the same values, respec-
tively. As shown in Fig. 1, all points �� , f��0,0�� with different
values of � but the same value of f��0,0� create a horizontal line
segment of the curve f��0,0��� in a region of −0.8���−0.2,
as does the curve g��0,0���. Therefore, if we choose −0.8��

�−0.2, we can ensure the convergence of the series of f��0,0�
and g��0,0�. In fact, we indeed get convergent results of f��0,0�
and g��0,0� by choosing �=−1/2. In general, by means of plot-
ting such kinds of � curves, we can always choose a proper value
of the auxiliary parameter � to get accurate HAM approximations,
as suggested by Liao �7–11�. Similarly, one can investigate the
convergence of the series solution at 
=0 in the whole region 0
��� +�. It is found that, when 
=0 and �=−1/2, the solution
series of f�0,�� and g�0,�� converge to the exact initial solutions
�7� and �8�, as shown in Fig. 2. Furthermore, it is found that when
�=−1/2, the series solution of f�
 ,�� and g�
 ,�� are even con-
vergent in the whole region 0�
�1 and 0��� +�. When 
=1/2, the 15th-order approximations of coefficient of skin friction

Fig. 1 The 15th-order HAM approximation of f�„0,0… and
g�„0,0… in the case of �=1/2
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Cf
x Rex

1/2 = 
−1/2�− 0.5744017005 − 0.4493808859


− 0.06481391332
2 − 0.01742724136
3

− 0.009296051716
4 − 0.005899366598
5

− 0.004065430821
6 − 0.002955448193
7

− 0.001917447834
8 − 0.009525724822
9

+ 0.07823876097
10 − 0.3945931407
11

+ 1.034178447
12 − 1.478649518
13 + 1.079883330
14

− 0.3178853418
15� �55�

and

Cf
y Rex

1/2 = 
−1/2�− 0.5524842929
 + 0.008804549832
2

+ 0.004367680454
3 + 0.002135276175
4

+ 0.001719399534
5 + 0.001533164270
6

+ 0.001399929708
7 + 0.001031699397
8

+ 0.009003153919
9 − 0.09321414938
10

+ 0.5469861363
11 − 1.668879409
12

+ 2.763217719
13 − 2.335134057
14

+ 0.7942135326
15� �56�

agree well with the numerical results for all time 
� �0,1�, cor-
responding to 0��� +�, as shown in Fig. 3.

In general, for any given value of , we can always choose a
proper value of the auxiliary parameter � in a similar way to
ensure that the solution series converge for all time 0��� +� in
the whole spatial region 0��� +�. For example, in cases of 
=0.5 and =1, our HAM results of the coefficient of skin friction
Cf

x Rex
1/2 and Cf

y Rex
1/2 agree well with the numerical solutions, as

shown in Figs. 4 and 5. As shown in Table 1, the 25th-order HAM
approximations have errors less than 0.5%. Note that for a larger
value of , the perturbation solution becomes worse, and its av-
erage error is about 40%. However, by choosing a proper value of
the auxiliary parameter �, our HAM approximations always con-
verge to the numerical solutions for any values of . Thus, the

homotopy analysis method is indeed a powerful analytic tool for
nonlinear problems with strong nonlinearity.

Indeed, the homotopy analysis method provides us with a
simple way to ensure the convergence of solution series by means
of choosing a proper value of the auxiliary parameter �. This is an
advantage of the homotopy analysis method over all other analytic
techniques. By the way, as proved by Hayat et al. �13� and Sajid et
al. �14�, and illustrated by Abbasbandy �15,16�, the approxima-
tions given by the so-called “homotopy perturbation method”
�17�, which was proposed 7 years later than the homotopy analy-
sis method �6�, are only special cases for those given by the ho-
motopy analysis method when �=−1. Like other traditional ana-
lytic techniques, the “homotopy perturbation method” �17� cannot
provide such a simple way to adjust and control the convergence
of the solution series �13–16�. For example, in the cases under
consideration, the results given by the “homotopy perturbation
method” �HPM� are valid only for small time, as shown in Figs. 4
and 5.

6 Conclusion
In this paper, the three-dimensional unsteady viscous flows due

to the impulsively stretching surface of the incompressible rotat-
ing fluid, governed by the Navier–Stokes equations, are solved by
means of one analytic technique for strongly nonlinear problems,
namely the homotopy analysis method �6–11�. In contrast to the
corresponding perturbation approximations which have 40% aver-
age errors, our series solutions are uniformly valid for all time 0
��� +� in the whole spatial region 0��� +�, but with only
less than 0.5% error, as shown in Table 1. Explicit analytic ex-
pressions of coefficients of skin friction are given, which are use-
ful in engineering and for validation of numerical simulations. All
of these verify the validity and potential of our approach for com-
plicated viscous flows.

The homotopy analysis method has some advantages over other
traditional ones. First, it provides us with great freedom to choose
the auxiliary linear operators. Using this kind of freedom, we
transfer the original nonlinear, combined initial-boundary-value
problem at hand into an infinite number of linear boundary-value
subproblems, which are so easy to solve that we can get results at
rather high orders of approximations. Second, contrary to all other

Fig. 2 Comparison of f�„0,�… with the exact solution: solid line
exact solution; filled circle: 15th-order HAM approximation;
open circle: 20th-order HAM approximation

Fig. 3 Comparison of numerical solutions with HAM results of
f�„� ,0… and g�„� ,0… in the case of �=1/2 by means of �=−1/2;
solid line: numerical result of f�„� ,0…; open circle: 15th-order
HAM approximation of f�„� ,0…; dash line: numerical result of
g�„� ,0…; filled circle: 15th-order HAM approximation of g�„� ,0…
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analytic techniques, the homotopy analysis method provides us
with a simple way to ensure convergence of solution series. Thus,
we can always get accurate enough approximations by means of
the homotopy analysis method. Third, in contrast to perturbation
techniques, the homotopy analysts method is independent of
small/large parameters. Thus, it is suitable for more nonlinear
problems. Finally, the homotopy analysis method logically con-
tains other nonperturbation techniques such as the Lyapunov’s
small parameter method, the �-expansion method, and the Adomi-
an’s decomposition method, as proved by Liao �7�. Currently,
Hayat et al. �13�, Sajid et al. �14�, and Abbasbandy �15,16�
pointed out that the so-called “homotopy perturbation method”
�17� proposed in 1999 is also a special case of the homotopy
analysis method �6,7� propounded in 1992. Thus, the homotopy
analysis method is rather general.

There exist numerous three-dimensional unsteady viscous flows
and heat transfer problems, which are often rather complicated.
The proposed homotopy analysis method provides us with a new

approach to get accurate and convergent series solutions of un-
steady three-dimensional Navier–Stokes equations, which are uni-
formly valid in the whole time 0��� +�.

Fig. 4 Comparison of numerical results †4‡ of Cf
x�Rex with

analytic approximations; symbols: numerical result; solid line:
15th-order HAM approximation: „a… �=−0.5; „b… �=−0.25; dash
line: perturbation approximation given by Nazar et al. †4‡; dash-
dotted line: 15th-order HPM approximation „�=−1…

Fig. 5 Comparison of numerical results †4‡ of Cf
y�Rex with

analytic approximations; symbols: numerical result; solid line:
15th-order HAM approximation „a… �=−0.5; „b… �=−0.25; dash
line: perturbation approximation given by Nazar et al. †4‡; dash-
dotted line: 15th-order HPM approximation „�=−1…

Table 1 Comparisons of HAM approximations of f�„1,0… and
g�„1,0… with numerical results given by Wang †1‡ and Nazar et
al. †4‡

f��1,0� g��1,0�

 Wang
Nazar
et al.

HAM
�25th� Wang

Nazar
et al.

HAM
�25th�

0.5 −1.138 −1.138 −1.138 −0.513 −0.513 −0.511
1.0 −1.325 −1.325 −1.323 −0.837 −0.837 −0.830
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Nomenclature
Cf

x � skin friction coefficient in the x direction
Cf

y � skin friction coefficient in the y direction
f ,g � real functions

F ,G � real functions
L f ,Lg � auxiliary linear operators
N f ,Ng � nonlinear operators

p � pressure
q � embedding parameter

Rex � local Reynolds number, Rex=ax2 /�
t � time

u ,v ,w � velocities in the x, y, z direction
x ,y ,z � spatial coordinates

� � similarity variable
 � non-dimensional parameter defined by =� /a

 � dimensionless time defined by 
=1−e−�

� � density
� � dimensionless time defined by �=at
� � kinematic viscosity

� � angular velocity in the z direction
�2 � Laplace operator
� � nonzero auxiliary parameter
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Stoneley Wave Generation in
Joined Materials With and
Without Thermal Relaxation Due
to Thermal Mismatch
Two perfectly bonded, thermoelastic half-spaces differ only in their thermal parameters.
Their governing equations include as special cases the Fourier heat conduction model
and models with either one or two thermal relaxation times. An exact solution in trans-
form space for the problem of line loads applied to the interface is obtained. Even though
the elastic properties of the half-spaces are identical, a Stoneley function arises, and
conditions for the existence of roots are more restrictive than for the isothermal case of
two elastically dissimilar half-spaces. Moreover, roots may be either real or imaginary.
An exact expression for the time transform of the Stoneley residue contribution to inter-
face temperature change is derived. Asymptotic results for the inverse that, valid for
either very short or very long times after load application, is obtained and show that, for
long times, residue contributions for all three special cases obey Fourier heat conduc-
tion. Short-time results are sensitive to case differences. In particular, a time step load
produces a propagating step in temperature for the Fourier and double-relaxation time
models, but a propagating impulse for the single-relaxation time model.
�DOI: 10.1115/1.2723826�

Introduction
Joined dissimilar elastic materials occur in geological forma-

tions �1� and as structural elements �2�. Transient analyses �1,3�
show that dynamic loading of these can produce, in addition to
dilatational and rotational waves, interface �Stoneley� waves.
Such waves are similar to Rayleigh surface waves �4� and so may
be important in assessing interface integrity.

The studies �1,3� concern isothermal materials. If, however,
coupled thermoelasticity �5� based on Fourier heat flow �6� gov-
erns, then material dissimilarity is characterized not only by mass
density �, shear modulus �, and Poisson’s ratio �, but also by
thermal conductivity k, coefficient of volumetric expansion �v,
and specific heat at constant volume cv. Indeed, if coupled ther-
moelasticity allows thermal relaxation �7�, then thermal relaxation
time�s� � arise and may also differ. To illustrate the effects of
thermal parameters �k ,�v ,cv ,�� this article considers the hypo-
thetical limit of two perfectly bonded materials whose properties
�� ,� ,�� are identical, i.e., isothermally there is a single material,
but whose properties �k ,�v ,cv ,�� differ. For generality, a coupled
elasticity formulation that includes Fourier �5� and thermal relax-
ation �7� models as special cases is employed.

The materials are treated as half-spaces, originally at rest at a
uniform temperature and then subjected to thermal-mechanical
line loads at the interface. The study begins with construction of
an exact solution in transform space. The solution exhibits a
Stoneley function that has no counterpart in the isothermal limit.
Conditions for the existence of Stoneley roots are determined, and
it is found that they can be more restrictive than in the isothermal
two-material case. Expressions for the roots, analytic to within a
single integration, are developed and found to give both real and
imaginary values, again in contrast to the isothermal two-material
case.

An exact formula for the time transform of the change in inter-

face temperature is developed. Analytical expressions for the
change itself, valid for either very long or very short times after
load application are then obtained for each of three models of
coupled thermoelasticity. The first is the classical formulation by
Chadwick �5� and the second and third are, respectively, single-
and double-relaxation formulations due to Lord and Shulman �8�
and Green and Lindsay �9�. Consistent with previous observation
�10�, the long-time results for the Stoneley contribution to inter-
face temperature change all have the character of the Fourier
model, and describe a temperature wave. The short-time results,
however, are waves that are sensitive to the particular model con-
sidered.

Statement of General Problem and Governing Equa-
tions

In terms of Cartesian coordinates �x ,y ,z� two isotropic, homo-
geneous, linear thermoelastic half-spaces are perfectly bonded
along the plane y=0. The thermal properties of the half-spaces are
dissimilar, but their elastic properties are identical. For time t
�0 both are at rest at the uniform ambient �absolute� temperature
T0 when, at t=0 thermal-mechanical disturbances are introduced
at the interface along the line �x ,y�=0. The disturbances may be
time-dependent, but do not vary along the line, so that a state of
plane strain is generated. In half-space 1 �y�0� and half-space 2
�y�0� the field equations for t�0 are

��2 − sr
2 �2

�t2��uxn,uyn� + � �

�x
,

�

�y
��m	n − �vnDn

II
n� = 0 �1a�

hn�
2
n − sr

�

�t
� �n

�vn
Dn	n − Dn

I 
n� = 0 �1b�

1

�
��xn,�yn,�zn� = �m − 1�	n − �vnDn

II
n + 2� �uxn

�x
,
�uyn

�y
,0�

�1c�
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1

�
�xyn =

�uxn

�y
+

�uyn

�x
�1d�

In �1� n= �1,2�, �uxn ,uyn ,	n ,
n� are, respectively, displacement
components, dilatation and change in temperature from T0, and
��xn ,�yn ,�zn ,�xyn� are stress components. These vary with
�x ,y , t�. For the Fourier Model F �5� and single- and double-
relaxation time Model I �8� and II �9�, respectively,

F:�Dn,Dn
I ,Dn

II� = 1 �2a�

I:Dn
II = 1,�Dn,Dn

I � = 1 + �n
I �

�t
�2b�

II:�Dn,Dn
II� = 1 + �n

II �

�t
,Dn

I = 1 + �n
I �

�t
�2c�

Here n= �1,2�, �n
I ��n

II0 are thermal relaxation times, and
Model II is seen to introduce thermal relaxation explicitly in con-
stitutive Eq. �1c�. In �1�

m =
1

1 − 2�
a = 2

1 − �

1 − 2�
�n =

�T0

�cvn
�vn

2 hn = vr�n
h sr =

1

vr

�3a�

�n
h =

kn

�cvn
vr =��

�
�3b�

In �1� and �3�, n= �1,2� and ��n ,hn ,sr ,vr ,�n
h� are, respectively, the

thermal coupling constant, thermoelastic characteristic length, ro-
tational wave slowness, rotational wave speed, and thermoelastic
characteristic time. Data �5,11–13� suggests that

vr � O�103�m/s m  2 �n � O�10−2�

hn � O�10−9�m ��n
I ,�n

II� � O�10−13�s �4�

These values indicate that �n
h��n

I ��n
II.

For y�0 the initial �t�0� conditions are

�uxn,uyn,
n� 	 0, n = �1,2� �5�

For t�0 the interface �y=0� conditions are

ux1 − ux2 = 0 uy1 − uy2 = 0 
1 − 
2 = 0 �6a�

�xy1 − �xy2 = Fx��x� �y1 − �y2 = Fy��x�

k1
�
1

�y
− k2

�
2

�y
= FT��x� �6b�

Here �Fx ,Fy ,FT� are the time-dependent thermal-mechanical load
magnitudes and � is the Dirac function. For t�0 �ux1 ,uy1 ,
1� and
�ux2 ,uy2 ,
2� should vanish as y→� and y→−�, respectively, and
singular behavior is expected at �x ,y�=0.

Transform Solution for the General Problem
Unilateral and bilateral �14� Laplace transforms over �t ,x� can

be defined as

F̂�x� =

0

�

F�x,t�exp�− pt�dt F̃ =

−�

�

F̂�x�exp�− pqx�dq �7�

Here p is positive real, and q is imaginary. Decomposition of �1a�
and �1b� in view of �5� gives

�2�a	n − �vnDn
II
n� − sr

2�2	n

�t2 = 0 ��2 − sr
2 �2

�t2�rxyn = 0 �t � 0�

�8a�

�	n,
n,rxyn� 	 0 �t � 0� �8b�

Here n= �1,2�, y�0, and rxyn is rotation in plane strain. Applica-
tion of �7� to �8� gives eigenfunctions and eigenvalues

exp�±pAn
+y� exp�±pAn

−y� exp�±pBy� �9a�

An
+�q2� = �sn

+2 − q2 An
−�q2� = �sn

−2 − q2 B�q2� = �sr
2 − q2

�9b�

In �9� n= �1,2� and the branch points are defined by �3� and

sn
± = kn

±sd sd =
sr

�a

2kn
± =��1 +�adn

I

�n
hp
�2

+
�ndn

�n
hp

±��1 −�adn
I

�n
hp
�2

+
�ndn

�n
hp

�10�

In �10� sd is the isothermal dilatational wave slowness, and from
�2�, �5�, and �7�,

F:�dn,dn
I � = 1 I:�dn,dn

I � = 1 + �n
I p II:�dn,dn

II� = 1 + �n
IIp

dn
I = 1 + �n

I p �11�

It can be shown in view of �4� for all three models that kn
+�1

�kn
−�0 and thus �sn

+ ,sr��sn
− for all positive real p. The inequal-

ity sn
+�sr �kn

+��a� also holds when

I:p �
m + �n

m�n
h − �m + �n��n

I II:p �
m + �n

m��n
h − �n

I � − �n�n
II F:p � 1 +

�n

m

�12�
Application of �7� to �1a� and �1b� in light of �5� and using �10�
and �12� gives transforms �ũ1x , ũ1y , 
̃1� �y�0� and �ũ2x , ũ2y , 
̃2�
�y�0� as linear combinations of �9a�. Operating on �1c�, �1d�,
�5�, and �6� with �7� gives the equations necessary to find the
coefficients. For present purposes it is sufficient to display results
for half-space 2:

� ũ2x

ũ2y

vr
2
̃2

� = � q q 1

A2
+ A2

− − q

�2�2
+ �2�2

− 0
��C+ exp�pA2

+y�
C− exp�pA2

−y�
CB exp�pB2y�

� �13a�

�C+

C−

CB
� =

1

�pS�M+
+ M−

+ 0

M+
− M−

− 0

0 0 S
��F+

F−

FB
� �13b�

For n= �1,2� in view of �11� and �12�,

�n =
p

�vndn
�n

± = 1 − kn
±2 �14a�

�n
+�n

− = −
�ndn

�n
hp

�n
− − �n

+ = �n =�1 +
1

�n
hp

�adn
I + �ndn��2

− 4�adn
I

�n
hp

�14b�

For �n parameter dn is defined by

I,F:dn = 1,II:�dn,dn
II� = 1 + �n

IIp �15�

Equation �11� governs �14b�, however. Introduction of branch cuts
Im�q�=0, �Re�q� � �sn

± and Im�q�=0, �Re�q� � �sr for �An
± ,B�, such

that Re�An
± ,B�0 in the cut q-plane guarantees that �13a� is

bounded as y→−� for positive real p. In �13b�
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F+ = �1�1
−�qF̂x + A1

−F̂y� −
vr

2

k1
F̂T �16a�

F− = �1�1
+�qF̂x + A1

+F̂y� −
vr

2

k1
F̂T �16b�

FB =
1

2
� q

B
F̂y − F̂x� �16c�

The matrix coefficients in �13a� are defined by

M+
+ = ��1�1

+ − �2�2
−��k1A1

− + k2A2
−�

M−
+ = ��2�2

− − �1�1
−��k1A1

+ + k2A2
−� �17a�

M−
− = ��1�1

− − �2�2
+��k1A1

+ + k2A2
+�

M+
− = ��2�2

+ − �1�1
+��k1A1

− + k2A2
+� �17b�

S = − �k1�1
2�1d1

t1
hp

+ k2�2
2�2d2

t2
hp

��A1
+ − A1

−��A2
+ − A2

−�

+ �1�2��1
+�2

+�k1A1
+ + k2A2

+��A1
− + A2

−� + �1
−�2

−�k1A1
− + k2A2

−��A1
+

+ A2
+�� − �1�2��1

+�2
−�k1A1

+ + k2A2
−��A1

− + A2
+� + �1

−�2
+�k1A1

−

+ k2A2
+��A1

+ + A2
−�� �17c�

Equation �11� defines �d1 ,d2� in �17c�. Quantity S is the Stoneley
function for the present thermoelastic case, and some discussion
of its behavior is now given.

Stoneley Function
For positive real p, S has branch cuts Im�q�=0,s*� �Re�q� �

�s*, where in view of �11�,

s* = min�s1
−,s2

−� s* = max�s1
+,s2

+� �18�

Study of �17c� shows that

S�q� � − �k1 + k2���1�1���2�2�q2 �q� → � �19a�

S�0� = sd
2�M12�1�2 − M1�1

2 − M2�2
2� �19b�

In �19b�, �M1 ,M2 ,M12� are defined by

�M1,M2� = � k1�1d1

�1
hp

,
k2�2d2

�2
hp

��k1
+ − k1

−��k2
+ − k2

−� �20a�

M12 = �1
+�2

+�k1k1
+ + k2k2

+��k1
− + k2

−� + �1
−�2

−�k1k1
− + k2k2

−��k1
+ + k2

+�

− �1
+�2

−�k1k1
+ + k2k2

−��k1
− + k2

+� − �1
−�2

+�k1k1
− + k2k2

+��k1
+ + k2

−�
�20b�

Equation �11� governs �20a� and in view of �12�, quantities
�M1 ,M2 ,M12��0 for positive real p. As outlined in Appendix A,
the sign of S�0� depends on parameter P given by �A3� and the
dimensionless ratio �1 /�2. Use of �17c�, �19�, and �20�, the fact
that S has branch cuts Im�q�=0,s*� �Re�q� � �s*, and argument
theory �15� in the manner of �16� show that three cases arise,

Case A:S�0� � 0,
S�±s*�
S�q�

→ 0 − , Im�q� = 0, �q� → �

�21a�

Case B:S�0� � 0,
S�±s*�
S�q�

→ 0 + , Im�q� = 0, �q� → �

�21b�

Case C:S�0� � 0 �21c�

For Case A, S exhibits roots q= ±s0 ,s0�0. For Case B no roots
arise in the cut q-plane. For Case C, S exhibits roots q= ± i�0 ,�0
�0.

Following �17,18� an expression for s0 that is analytic to within
a single integration can be obtained. We introduce the function

G�q� =
S�q�

�k1 + k2���1�1���2�2�
1

s0
2 − q2 �22�

It has branch cuts Im�q�=0,s*� �Re�q� � �s*, approaches unity as
�q � →�, and has no roots or zeros in the cut q-plane. After Noble
�19�, it factors as the product of functions G± that are analytic in
the overlapping strips Re�q��−s* and Re�q��s*, respectively,
and are given by

ln G±�q� =
1

�



s*

s*

tan−1Im S�u + i0�
Re S�u + i0�

du

u ± q
�23�

Setting G=G+G− in �22� and evaluating it at q=0 gives the for-
mula

s0 =
sd

G±�0���1�2�k1 + k2�
�M12 − M1

�1

�2
− M2

�2

�1
�24�

Replacing s0
2 by the term −�0

2 in �22� gives �23� again, but �24� is
replaced by

�0 =
sd

G±�0���1�2�k1 + k2�
�M1

�1

�2
+ M2

�2

�1
− M12 �25�

It is noted that in �23� both G+ and G− are analytic at q= ± �s*
−0� and q= ± �s*+0�. Thus evaluating �22� at these locations
shows by way of a check that S�0� and S�±s*� have the same sign,
and that the limit in �21b� occurs whenever S�0��0. Because
Case A and B are analogous to the isothermal problem, the results
obtained so far are used to study Stoneley effects in interface
temperature for these cases.

Interface Temperature Change
It can then be shown that the temperature change on the inter-

face exhibits, in view of �13a�, �16�, and �17� the transform

�
̃1, 
̃2� = 
̃12 =
�1�2

pS
�qMx

F̂x

�p
+ My

F̂y

�p
+ MT

k1F̂T

�
� �26�

Here S is given by �17c� and

Mx = �2k1
�1d1

�1
h �A1

+ − A1
−���2

+ − �2
−� + �1k2

�2d2

�2
h �A2

+ − A2
−���1

+ − �1
−�

�27a�

My = �2k1
�1d1

�1
h �A1

+ − A1
−���2

−A2
+ − �2

+A2
−�

+ �1k2
�2d2

�2
h �A2

+ − A2
−���1

−A1
+ − �1

+A1
−� �27b�

MT = �1
+�2

−�A1
− + A2

+� + �1
−�2

+�A1
+ + A2

−� − �1
+�2

+�A1
− + A2

−�

− �1
−�2

−�A1
+ + A2

+� �27c�

Equation �11� governs dn in �27a� and �27b� for n= �1,2�. The
inverse of the second operation in �7� can be written as

F̂�x� =
p

2�i 
 F̃ exp�pqx�dq �28�

Integration is over a Bromwich contour, which for Case A can be
taken as the entire Im�q�-axis. However, �21a� and �29� show that
the integrands that result upon substituting �26� in �28� vanish as
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�q � →� for all x�Mx ,My� and x�0 �MT� because

S � O�q2� Mx � O�1/�− q2� My � O�1�

MT � O��− q2� �q� → � �29�

The �Mx ,MT� integration can therefore be performed in the
Cauchy principal value sense about Im�q�=0, Re�q��−s*�x�0�
or Im�q�=0, Re�q��s*�x�0�. Similarly, the My-term gives an
integral around Im�q�=0,−s*�Re�q��−s*�x�0� or Im�q�
=0,s*�Re�q��s*�x�0� and the pole residue


̂12
S =

F̂y

2�s0p

Ny

�1�2�k1 + k2�G0
exp�− ps0�x�� �30a�

ln G0 =
2

�



s*

s*

tan−1Im S�u + i0�
Re S�u + i0�

udu

u2 − s0
2 �30b�

Ny = �2k1
�1d1

�1
h ��1

+ − �1
−���2

+�2
− − �2

−�2
+�

− �1k2
�2d2

�2
h ��2

+ − �2
−���1

+�1
− − �1

−�1
+� �30c�

�n
± = �s0

2 − sn
±2, n = �1,2� �30d�

Equation �11� again governs dn, and �9a�, �10�, �11�, �19�, and �30�
show that 
̂12

S appropriately vanishes when thermal properties of
the two half-spaces are also identical. For Case B a term such as
�30a� does not arise. Inversion of �30a� is now sought for Case A
for the three models. To allow more insight into behavior, analyti-
cal results are achieved with asymptotic versions of the transforms
that are valid for very long or very short times after the line loads
are applied.

Inversion for Long Times
A robust asymptotic result for long times, here defined for all

three models as

t � max��1
h,�2

h� �31�

is obtained by inverting an approximate transform valid for
max��1

hp ,�2
hp��1. It is noted that all D-operators �and thus the

corresponding d-factors� become unity, i.e., all three models re-
duce to the Fourier Model F. For n= �1,2�, �10�–�12� yield

kn
+ �� an

�

�n
hp

�n
+ � −

an
�

�n
hp

kn
− ��an

�

a
�n

− �
�n

a
an

� = a + �n

�32a�

sn
+ � �n

��sr

p
sn

− �
sr

�an
�

= sn
� =

1

vn
� �n �

p

�nv
�n

� =� an
�

ahn

�32b�

Here �vn
� ,sn

�� are the thermoelastic dilatational wave speed and
slowness �20�. Equations �10�–�12�, �19a�, and �32b� and the re-
sults of Appendix A indicate that conditions for Case A are always
met, so that �26� and �30� give

s0 �
�k1�1

� + k2�2
�

�k1 + k2
��1

� + �2
�
��a1

� + �a2
��sr

a
� sr �33a�


12
S �

NF

��k1 + k2�

��1
0

��1
0 + �2

0
Fy�t − s0�x��H�t − s0�x�� �33b�

NF =
k1�1a1

��1
0

�1
h�v2

�1 −
�2

0

s0
� −

k2�2a2
��2

0

�2
h�v1

�1 −
�1

0

s0
� �33c�

�n
0 = �s0

2 − sn
�2, n = �1,2� �33d�

Here H is the Heaviside function.

Inversion for Short Times: Model F
The short time range for Fourier Model F is defined as

t � min��1
h,�2

h� �34�
A robust asymptotic result can therefore be obtained from a trans-
form approximation valid for min��1

hp ,�2
hp��1. It can be shown

for n= �1,2� that

kn
+ � 1 �n

+ �
− �n

�n
hp

kn
− �� a

�n
hp

�n
− � 1 �35a�

sn
+ � sd sn

− �
1

�hnp
�n =

p

�vn
�35b�

In light of �12� and �35� materials are chosen so that

s1
− � s2

− � sd � sr �36�
Appendix A and �19� show that Case A always arises, and �26�
and �30� yield

s0 �
�2�k1

�h2 + k2
�h1

�k1 + k2
��h1 + �h2

sd � sr �37a�


12
S �

NF

��2�k1 + k2�
Fy�t − s0�x��duH�t − s0�x�� �37b�

NF = � k1�1

�1
h�v2

−
k2�2

�2
h�v1

�a�0�1 −
�0

s0
� �0 = �s0

2 − sd
2 �37c�

Inversion for Short Times: Model 1
For the single-relaxation time model, valid results are obtained

for

t � min��1
I ,�2

I � �38�

with approximate transforms valid for max��1
I p ,�2

I p��1. Then
for n= �1,2�

2kn
± � ��1 + �aln

I �2 + �nln
I ± ��1 − �aln

I �2 + �nln
I ln

I =
�n

I

�n
h � 1

�39a�

�n �
p

�vn
�n

+�n
− � − �n�n

I �39b�

It is noted that ln
I is a dimensionless ratio of characteristic times,

and the s-quantities are constants, i.e., wave slowness. In light of
�12� one can consider the situation

s1
− � s2

− � s1
+ � s2

+ � sr �40�
Use of Appendix A, �19� and �39� shows that Case A arises only if

z− �
�v2

�v1
� z+ MI � 0 �41�

Parameters z± are given by �A5� in Appendix A, with �39� under-
stood and

�M1,M2� � �k1�1�1
I ,k2�2�2

I ��k1
+ − k1

−��k2
+ − k2

−� �42�

Parameter MI is defined as
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MI = �1
+�2

−�k1�1
+ + k2�2

−���1
− + �2

+� + �1
−�2

+�k1�1
− + k2�2

+���1
+ + �2

−�

− �1
+�2

+�k1�1
+ + k2�2

+���1
− + �2

−� + �1
−�2

−�k1�1
− + k2�2

−���1
+ + �2

+�
�43�

For Case A �24� is valid, with

s* = s1
− s* = s2

+ G±�0� � exp �I�0� �44�
Inversion of �30a� then produces


12
S �

NI

�s0�1�2�k1 + k2�
exp�− 2�I�s0��Ḟy�t − s0�x��H�t − s0�x��

�45a�

NI =
k1�1l1

I

�v2
��1

+ − �1
−���2

+�2
− − �2

−�2
+�

−
k2�2l2

I

�v1
��2

+ − �2
−���1

+�1
− − �1

−�1
+� �45b�

The superposed dot signifies time differentiation,�I is defined by
�B1a� in Appendix B and �39� holds.

Inversion for Short Times: Model 2
For the double-relaxation time model, valid results for

t � min��1
II,�2

II� �46�
are obtained by examining approximate transforms valid for
min��1

IIp ,�2
IIp��1. For both materials asymptotic results are

2kn
± � ��1 + �aln

I �2 + �nln
II ± ��1 − �aln

I �2 + �nln
II �47a�

ln
II =

�n
II

�n
h � ln

I � 1

�n �
1

�nv�n
II �n

+�n
− � − �nln

II �47b�

As with Model 1 each s-parameter is wave slowness, and situation
�40� can again be considered. Use of Appendix A, �19� and �47�
shows that Case A arises only when

z− �
�v2�2

II

�v1�1
II � z+ MII � 0 �48�

Again �A5� in Appendix A holds, but now

�M1,M2� � �k1�1l1
II,k2�2l2

II��k1
+ − k1

−��k2
+ − k2

−� �49a�

MII = MI − ��1
+ − �1

−���2
+ − �2

−��II �II = k2�2l2
II�v1

�v2
+ k1�1l1

II�v2

�v1

�49b�
It is understood that �47�, not �39�, holds for all quantities, includ-
ing MI. If �48� is satisfied then �24� holds, with

s* = s1
− s* = s2

+ G±�0� � exp �II�0� �50�
Inversion of �30a� then gives


12
S �

NII

�s0�1�2�k1 + k2�
exp�− 2�II�s0��Fy�t − s0�x��H�t − s0�x��

�51a�

NII =
k1�1l1

II

�v2�2
II ��1

+ − �1
−���2

+�2
− − �2

−�2
+�

−
k2�2l2

II

�v1�1
II ��2

+ − �2
−���1

+�1
− − �1

−�1
+� �51b�

Function �II is defined in Appendix C.

Some Observations
Equation �17c� shows that a Stoneley function arises in trans-

form space for a transient study of perfectly bonded thermoelastic
half-spaces. Condition �21� for the existence of Stoneley roots is
similar to those for the isothermal case, but is also more limiting.
Expressions �24� and �25� for the roots, analytic to within a single
integration, may depend on the unilateral Laplace �time� trans-
form variable p, i.e., not correspond to, as in the isothermal case,
a constant Stoneley wave slowness. Moreover, the root can for
positive real p be either real �24� or imaginary �25�.

It is found that the line load force that acts normal to the inter-
face produces, from the residue of the real root, contribution �30a�
to the time transform of the interface temperature change. The
contribution has an analytical form, and asymptotic versions of
this, valid for long or short times after the line load is applied, are
inverted analytically.

Inversion �33b� shows that the residue contribution behaves for
long times as if the half-spaces obey classical Fourier theory �5�
even when thermal relaxation �8,9� is present. Conditions for ex-
istence of the Stoneley root �in asymptotic form� are always met,
and the root given in �33a� is constant, i.e., a Stoneley wave
slowness. Equation �33b� for the contribution, therefore, describes
a temperature wave.

For short times, �37a�, �24�, �44�, and �50� show that each
model can exhibit its own constant real root, so that the tempera-
ture wave contribution of the residue for the three models are not
identical. Existence conditions for the Fourier model are always
met, whereas restriction �41� and �48� hold for, respectively, the
single- and double-relaxation time models. Moreover, contribu-
tions given in �37b� and �51a� for the Fourier and double-
relaxation time models are proportional to the line load function
Fy. The contribution given in �45a� for the single-relaxation time
model is proportional to the time derivative of Fy.

The observation that �h��I��II, made in connection with �4�,
implies in view of �31�, �34�, �38�, and �46� that asymptotic result
�33b� for the Stoneley wave contribution to interface temperature
is the most robust. Nevertheless, work �21� in a fluid shows that
response for very short times after load application can be distinc-
tive. Indeed, as the comments made above imply, a loading func-
tion Fy that is a step �Heaviside� function in time generates for
long times a propagating step function that is identical in form for
all three models. For short times, however, the Fourier �F� and
double-relaxation �II� time model contributions are propagating
step functions that differ from each other, and that for the single-
relaxation �I� model is a propagating impulse.

In summary, the present results show that Stoneley waves can
be generated by thermal mismatch alone, for either coupled ther-
moelasticity based on Fourier heat flow �5� or thermal relaxation
with one �8� or two �9� relaxation times. While the dissimilarity in
perfectly bonded half-spaces treated here is hypothetical, the pos-
sibility that one or more thermal or mechanical properties of two
different materials may match exists �12�. It is hoped in any event
that results given here prove useful in the transient study of solids
that consist of dissimilar thermoelastic materials. It is noted in
closing that the general case of complete mismatch based on the
coupled thermoelastic model used here has been treated �22�. The
present results serve as a check.

Appendix A
Because ��1 ,�2� are positive for positive real p, �19a� is stud-

ied in terms of quadratic

M12z − M1z2 − M2 z =
�1

�2
� 0 �A1�

Its discriminant and the location of its maximum value are
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M12
2 − 4M1M2 z =

M12

2M1
�M1,M2,M12� � 0 �A2�

The former can be rewritten in the form

�k1
+ − k1

−�2�k2
+ − k2

−�2P P = �C1 + C2�2 − 4C3 �A3�

Factor P is quadratic in �k1 ,k2�,

C1 = k1C11 + k2C12 C2 = k1C21 + k2C22 C3 = k1k2C33

�A4a�

C11 = �k1
+2 + k1

+k1
− + k1

−2��1 + k2
+k2

−�

C22 = �k2
+2 + k2

+k2
− + k2

−2��1 + k1
+k1

−� �A4b�

�C12,C21� = �k2
+k2

−,k1
+k1

−��k1
+ + k1

−��k2
+ + k2

−� �A4c�

C33 = �1 − k1
+2��1 − k1

−2��1 − k2
+2��1 − k2

−2� �A4d�

In view of �11�, �12�, and �15� it is seen that �C1 ,C2 ,C3��0, but
particular combinations of �k1 ,k2� and �k1

± ,k2
±� determine the sign

of P and thus, the sign of �A2�. It follows that

P � 0:S�0� � 0�z− �
�1

�2
� z+� ,

S�0� � 0�0 �
�1

�2
� z−,

�1

�2
� z+� �A5a�

P � 0:S�0� � 0 �A5b�

In �A5b� the limit terms

z± =
1

2M1
�M12 ± �M12

2 − 4M1M2� �A6�

It can be shown that the sign of the discriminant of P follows from
the sign of

C33 − �C11 + C21��C22 + C12� �A7�

Thus if �k1
± ,k2

±� have values for positive real p such that �A7� is
negative, then P does not change sign with �k1 ,k2�.

Appendix B
Function �I that appears in �44� and �45a� is defined by

�I�q� =
1

��

s1
−

s2
−

�1udu

u2 − q2 +

s2
−

s1
+

�2udu

u2 − q2 +

s1
+

s2
+

�3udu

u2 − q2�
�B1a�

�1 = tan−1 �1
− N1

D1
�2 = tan−1 1

D2
��1

−N21 + �2
−N22�

�3 = tan−1 A2
+ N3

D3
�B1b�

In �B1b� the quantities

N1 = k1�A1
+��1

+ − �1
−���2

+ − �2
−� + �1

−��2
−A2

+ − �2
+A2

−��

+ k2�1
+��2

+A2
+ − �2

−A2
−� �B2a�

D1 = k1�1
+A1

+��2
−A2

+ − �2
+A2

−� + k2�2
+A2

+��1
−�A1

+ + A2
−� − �1

+A2
−�

+ k2�2
−A2

−��1
+A2

+ − �1
−�A1

+ + A2
+�� �B2b�

N21 = k1�A1
+��1

+ − �1
−���2

+ − �2
−� + �1

−�2
−A2

+� + k2�1
+�2

+A2
+

�B3a�

N22 = k2�A2
+��1

+ − �1
−���2

+ − �2
−� + �1

−�2
−A1

+� + k1�1
+�2

+A1
+

�B3b�

D2 = A1
+A2

+�k1�1
+�2

− + k2�1
−�2

+� − �1
−�2

−�k1�1
−�2

+ + k2�1
+�2

−�
�B3c�

N3 = k2�2
+��1

+��1
− + �2

−� − �1
−��1

+ + �2
−�� + �2

−��1
−�1

+�k1�1
− + k2�2

−�

− �1
+�k1�1

+ + k2�2
−�� �B4a�

D3 = k1�2
+��1

+�1
+��1

− + �2
−� − �1

−�1
−��1

+ + �2
−��

+ �2
−��1

−�1
+�k1�1

− + k2�2
−� − �1

+�1
−�k1�1

+ + k2�2
−�� �B4b�

In �B2�–�B4�, Eqs. �9b�, �14a�, and �39� hold with argument u2,
and

�1
± = �u2 − s1

±2 �2
− = �u2 − s2

−2 �B5�

Appendix C
The function �II that appears in �50� and �51a� has the same

form as function �I defined by �B1a� in Appendix B. However,
�B1b� in Appendix B is modified,

�1 = tan−1 �1
− N1 + �II�A2

+ − A2
−�

D1 + �IIA1
+�A2

+ − A2
−�

�C1a�

�2 = tan−1�1
−�N21 + �IIA2

+� + �2
−�N22 + �IIA1

+�
D2 + �II�A1

+A2
+ − �1

−�2
−�

�C1b�

�3 = tan−1 A2
+ N3 − �II�2

−��1
+ − �1

−�
D3 + �IIA2

+��1
+ − �1

−�
�C1c�

In Eqs. �B2�–�B5� in Appendix B, �C1�, �9b�, and �14a�, Eq. �49b�
defines �II and �47� holds.
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Linear dynamics of Euler–Bernoulli beams with nonviscous non-
local damping is considered. It is assumed that the damping force
at a given point in the beam depends on the past history of ve-
locities at different points via convolution integrals over exponen-
tially decaying kernel functions. Conventional viscous and vis-
coelastic damping models can be obtained as special cases of this
general damping model. The equation of motion of the beam with
such a general damping model results in a linear partial integro-
differential equation. Exact closed-form equations of the natural
frequencies and mode shapes of the beam are derived. Numerical
examples are provided to illustrate the new results.
�DOI: 10.1115/1.2712315�

1 Introduction
Viscous damping is the most common damping model used for

linear dynamic systems. However, within the scope of linear
theory, more general nonviscous models have been used in the
recent past �1–5�. Nonviscous damping models in general have
more parameters and therefore are more likely to have a better
match with experimental measurements. A linear damped continu-
ous dynamic system in which the displacement variable u�r , t�,

where r is the spatial position vector and t is time, specified
in some domain D, is governed by a linear partial differential
equation

��r�ü�r,t� + L1u̇�r,t� + L2u�r,t� = p�r,t�; r � D, t � �0,T�

�1�
with homogeneous linear boundary conditions of the form

M1u�r,t� = 0; r � �1 and M2u̇�r,t� = 0; r � �2 �2�

specified on some boundary surfaces �1 and �2. In the above
equation ��r� is the mass distribution of the system: p�r , t� is the
distributed time-varying forcing function; and L2 is the spatial
self-adjoint stiffness operator and M1 and M2 are linear opera-
tors acting on the boundary. For external �or foundation� damping
the operator L1 can be written in the form

L1u̇�r,t� =�
D
�

−�

t

C1�r,�,t − ��u̇��,��d� d� �3�

where C1�r ,� , t� is the kernel function. The velocities u̇�� ,�� at
different time instants and spatial locations are coupled through
this kernel function. Lei et al. �5� considered both external and
internal damping, and although internal damping is not considered
further in this paper, the proposed method may be extended to this
case. Kernel functions that serve similar purposes have been de-
scribed by different names in different subjects �for example, re-
tardation functions, heredity functions, after-effect functions, re-
laxation functions�, and different models have been used to
describe them. Equation �1� together with Eq. �3� represents a
continuous dynamic system with general linear damping. It may
be noted that if L1=0 in Eq. �1�, i.e., an undamped system, or if
the system satisfies the criteria given by Caughey and O’Kelly �6�,
then the system will possess classical normal modes. However,
due to the general nature of the operator L1 as described by Eq.
�3�, there is no definite reason why the system should have clas-
sical normal modes. Thus the mode shapes and natural frequen-
cies of such systems in general will be complex in nature. In this
context we wish to note that the system expressed by Eq. �1� and
the damping operator defined in Eq. �3� represents a partial
integro-differential equation with the boundary conditions given
in Eq. �2�. In this technical brief we are interested in the natural
frequencies and mode shapes of the system. Exact closed-form
expressions of such quantities for the general case are difficult to
obtain. We make the following general assumptions:

1. The mass and stiffness distributions are homogeneous, that
is, they do not vary with the position vector r; and

2. The damping kernel function is separable in space and time
so that

C1�r,�,t − �� = C�r�c�r − ��g�t − �� �4�

Depending on the nature of the functions c�•� and g�•�, several
special cases, starting from the simple viscous model to the more
general nonviscous model, may arise �5�. For example, if both c�•�
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and g�•� are delta functions then the result is the “locally reacting”
viscous damping model. If only c�•� is a delta function, then the
resulting model becomes a locally reacting viscoelastic damping
which is also known as the time hysteresis model. For the case
when only g�•� is a delta function, the resulting model becomes
nonlocal viscous damping or the spatial hysteresis model. Here
the general case, that is, when none of these two functions are the
delta functions, is considered. Based on the transfer matrix
method �7�, we propose a new method for modal analysis of a
Euler–Bernoulli beam with general linear damping given by Eq.
�4�.

2 Governing Equation of Motion
The Euler–Bernoulli beam considered in this study is shown in

Fig. 1. The left and right coordinates of the beam are denoted by
xL and xR, respectively. The beam has a nonlocal viscoelastic
damping patch between x1 and x2. It is assumed that the elastic
properties of the beam are uniformly distributed with bending
rigidity EI and mass density �A.

In order to formulate and solve the equation of motion, it is
necessary to use some kind of plausible functional form of the
kernel functions in space and time. In this study we choose the
following functional forms �5�

g�t� = g�� exp�− �t� �5a�
so that

G�s� =
g��

s + �
, g�, � � 0 �5b�

and

c�x − �� =
�

2
exp�− ��x − ���, C�x� = 1 �6�

These models imply that the correlations in both space and time
decay exponentially. If �→ � ,�→� one obtains the standard
viscous model; if �→� and � is finite one obtains the time hys-
teresis model; and if � is finite but �→� one obtains the spatial
hysteresis model.

The equation of motion of the part with the damping patch can
be expressed by

EI
�4w�x,t�

�x4 + �A
�2w�x,t�

�t2 +�
x1

x2�
−�

t
�

2
exp�− ��x − ����

	g�� exp�− ��t − ���
�w��,t�

�t
�

t=�

d� d�

= 0 when x � �x1,x2� �7�
The equation of motion of the part outside the damping patch can
be expressed by

EI
�4w�x,t�

�x4 + �A
�2w�x,t�

�t2 + C0
�w�x,t�

�t

= 0 when x � �xL,x1� � �x2,xR� �8�

Appropriate boundary conditions must be satisfied at x=xL and at
x=xR. In addition to this we need to satisfy relevant continuity
conditions at the internal points x1 and x2. No forcing is assumed
because the central interest in this study is to obtain the eigenso-
lutions. The function w�x , t� in Eqs. �7� and �8� is smooth and

continuously differentiable up to fourth order with respect to x.
Here we assume that w�x , t� is continuously differentiable up to
fifth order. In what follows, Eqs. �7� and �8� are solved separately
and the solutions are combined to obtain the eigensolutions. We
begin with the solution of Eq. �7�.

3 Solution for the Section With Nonlocal Viscoelastic
Damping

Assuming zero initial conditions, the Laplace transform of the
displacement �with no external force� satisfies

EIWIV�x,s� + s2�AW�x,s� +
�

2
sG�s��

x1

x2

exp�− ��x − ���W��,s�d�

= 0, x � �x1,x2� �9�

Here s is the complex Laplace parameter; and W�x ,s� is the
Laplace transform of w�x , t�. The roman superscripts, for example
�•�IV, denote the order of derivative with respect to the spatial
variable x. It is useful to separate the contribution arising from the
term �x−�� in Eq. �9� as

EIWIV�x,s� + s2�AW�x,s� +
�

2
sG�s��

x1

x

exp�− ��x − ���W��,s�d�

+
�

2
sG�s��

x

x2

exp���x − ���W��,s�d� = 0 �10�

The function W�x ,s� is continuously differentiable up to fifth or-
der with respect to x because w�x , t� is assumed to be continuously
differentiable up to fifth order. Differentiating Eq. �10� with re-
spect to the spatial variable x one obtains

EIWV�x,s� + s2�AWI�x,s� −
�2

2
sG�s��

x1

x

exp�− ��x − ���W��,s�d�

+
�2

2
sG�s��

x

x2

exp���x − ���W��,s�d� = 0 �11�

Differentiating again gives

EIWVI�x,s� + s2�AWII�x,s� +
�3

2
sG�s��

x1

x

exp�− ��x − ���W��,s�d�

+
�3

2
sG�s��

x

x2

exp���x − ���W��,s�d� − 2
�2

2
sG�s�W�x,s� = 0

�12�
Using Eqs. �10� and �12� we have

EIWVI�x,s� + s2�AWII�x,s� − �2�EIWIV�x,s� + s2�AW�x,s��

− �2sG�s�W�x,s� = 0 �13�
Equation �13� is a sixth-order ordinary differential equation which
can be solved by transforming into the first-order form. Recall that
the solution of a sixth-order ordinary differential equation requires
six boundary conditions corresponding to W�x ,s� , . . . ,WVI�x ,s�.
However, the compatibility with the other beam solutions only
gives four boundary conditions. The other boundary conditions
are implicit in the integro-differential equation. For example, at
x=x1, Eq. �10� becomes

EIWIV�x1,s� + s2�AW�x1,s� +
�

2
sG�s��

x1

x2

exp���x − ���W��,s�d�

= 0 �14�
and Eq. �11� becomes

Fig. 1 Euler–Bernoulli beam with nonviscous damping patch
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EIWV�x1,s� + s2�AWI�x1,s� +
�2

2
sG�s��

x1

x2

exp���x − ���W��,s�d�

= 0 �15�

Notice the integrals are the same in Eqs. �14� and �15� and hence
combining these equations gives

EIWV�x1,s� − �EIWIV�x1,s� + s2�AWI�x1,s� − �s2�AW�x1,s� = 0

�16�

A similar procedure for x=x2 gives

EIWV�x2,s� + �EIWIV�x2,s� + s2�AWI�x2,s� + �s2�AW�x2,s� = 0

�17�

To find the eigenvalues using the transfer matrix approach, we
need to relate the boundary conditions at the ends of the beam
segments. For the beam with the damping layer, we define the
state vector ��x ,s� and partition it as

��x,s� = �u�x,s�
v�x,s� 	 � C6 �18�

where

u�x,s� = �W�x,s�,WI�x,s�,WII�x,s�,WIII�x,s��T � C4 �19�

and

v�x,s� = �WIV�x,s�,WV�x,s��T � C2 �20�

Using the state vector in Eq. �18�, Eq. �13� can be cast in matrix
form as

d

dx
��x,s� = ��s���x,s�, x � �x1,x2� �21�

where

��s� = 

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�2sG�s� + �2s2�A

EI
0 −

s2�A

EI
0 �2 0

� �22�

The solution of Eq. �21� can be expressed as

��x,s� = exp���s��x − x1���1�s�, x � �x1,x2� �23�

where �1�s�=��x1 ,s�. In particular

�2�s� = exp���s��x2 − x1���1�s� = ��s��1�s� �24�

where �2�s�=��x2 ,s� and ��s�=exp���s��x2−x1��. We also have
from Eqs. �16� and �17� that

b1�s�T�1�s� = 0 �25a�

and

b2�s�T�2�s� = 0 �25b�

where

b1�s� =�
− �s2�A

s2�A

0

0

− �EI

EI

 �26a�

and

b2�s� =�
�s2�A

s2�A

0

0

�EI

EI

 �26b�

From Eq. �24� and Eq. �25b�

b2�s�T�2�s� = b2�s�T��s��1�s� = 0 �27�

Combining Eqs. �25a� and �27� we have

E�s��1�s� = 0 �28�

where

E�s� = � b1�s�T

b2�s�T��s� 	
We partition E�s� as

E�s� = �E1�s� E2�s�� �29�

where E1�s� is 2	4 and E2�s� is 2	2. From Eq. �28� we have

E1�s�u�x1,s� + E2�s�v�x1,s� = 0 �30�

or

v�x1,s� = − E2�s�−1E1�s�u�x1,s� �31�

Using Eq. �24� we finally have

u�x2,s� = T�s�u�x1,s� �32�

where

T�s� = �I4	4 04	2���s�� I4	4

− E2�s�−1E1�s� 	 �33�

4 Eigensolutions of the Complete Beam
Applying the Laplace transform to the equation of motion for

the viscously damped segments Eq. �8�, and considering the state
vector u�x ,s� we can obtain

d

dx
u�x,s� = �̄�s�u�x,s�, x � �xL,x1� � �x2,xR� �34�

where

�̄�s� = 

0 1 0 0

0 0 1 0

0 0 0 1

−
s2�A + sC0

EI
0 0 0� �35�

The transfer function matrices can be obtained in the usual man-
ner from Eq. �34� as discussed before. The boundary conditions of
the beam can be expressed as

M�s�u�xL,s� + N�s�u�xR,s� = 0 �36�

where M�C4	4 and N�C4	4 are the boundary matrices �see, for
example, Ref. �7��. Using the transfer matrices corresponding to
the three parts, u�xR ,s� can be expressed in terms of u�xL ,s� as

u�xR,s� = TR�s�T�s�TL�s�u�xL,s� �37�

where T�s� is defined in Eq. �33� and

TR�s� = exp��̄�s��xR − x2�� �38a�

and
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TL�s� = exp��̄�s��x1 − xL�� �38b�
Substituting Eq. �37� into Eq. �36�, one concludes that the eigen-
values are the roots of characteristic equation

det�M�s� + N�s�TR�s�T�s�TL�s�� = 0 �39�

Assuming 
 j are the eigenvalues, the corresponding mode shapes
can be determined by

� j�x� = u�x,
 j�

= �exp��̄�
 j��x − xL��u0�
 j�, xL � x � x1

Tm�x,
 j�TL�
 j�u0�
 j�, x1 � x � x2

exp��̄�
 j��x − x2��T�
 j�TL�
 j�u0�
 j�, x2 � x � xR

�40�
Here

Tm�x,
 j� = �I4	4 04	2�exp���
 j��x − x1��� I4	4

− E2�
 j�−1E1�
 j�
	

�41�

and u0�
 j�∀ j is a vector in the null space of the matrix in Eq. �39�
evaluated at s=
 j.

5 Numerical Example
A damped pinned–pinned beam similar to that shown in Fig. 1

is used to illustrate the proposed method. The numerical values
used are as follows: xR=0 m, xL=1 m, x1=0.25 m, and x2
=0.75 m, E=70 GN/m2, �=2700 kg/m3, C0=g�=15.667 Ns/m,
and the cross section is 5	5 mm2. The first five eigenvalues for
different values of the relaxation parameter, including the case
when the whole beam is uniformly viscously damped with param-
eter C0, is shown in Table 1.

The real parts of the first four modes are shown in Fig. 2 for the
four sets of parameter values given in Table 1.

The corresponding imaginary parts of the first four modes are
shown in Fig. 3.

Note that, unlike the eigenvalues, � and � do significantly af-
fect the eigenvectors.

6 Conclusions
The increasing use of advanced composite materials and active

control mechanisms demand sophisticated treatment of damping
forces within a distributed parameter system. This technical brief
proposes a new method to obtain the natural frequencies and
mode shapes of Euler–Bernoulli beams with general linear damp-
ing models. It was assumed that the damping force at a given
point in the beam depends on the past history of velocities at
different points via convolution integrals over exponentially de-
caying kernel functions. Due to the general nature of the damping
forces, the equation of motion becomes an integro-differential
equation which couples the deflections at different time instants
and spatial locations. The conventional transfer matrix method
was extended to such integro-differential equations. Commonly
used viscous and viscoelastically damped systems can be consid-

ered as special cases of the general formulation derived in the
paper. The method was applied to a uniform beam with a nonlocal
viscoelastic damping patch. Future work will discuss computa-
tional issues and forced vibration problems.
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Discontinuous Galerkin methods are commonly derived by seek-
ing a weak statement of the governing differential equations via a
weighted-average approach allowing for discontinuous fields at
the element interfaces of the discretization. In order to ensure
consistency and stability of the formulation, this approach re-
quires the definition of a numerical flux and a stabilization term.
Discontinuous Galerkin methods may also be formulated from a
linear combination of the governing and compatibility equations
weighted by suitable operators. A third approach based on a
variational statement of a generalized energy functional has been
proposed recently for finite elasticity. This alternative approach
naturally leads to an expression of the numerical flux and the
stabilization terms in the context of large deformation mechanics
problems. This paper compares these three approaches and estab-
lishes the conditions under which identical formulations are
obtained. �DOI: 10.1115/1.2712228�

Keywords: discontinuous Galerkin, elliptic equation, hyperelas-
ticity

1 Introduction
In the last several years, discontinuous Galerkin methods have

been an increasing focus of attention in the area of computational
fluid mechanics �1–3� and, more recently, in solid mechanics
�4–8�. The main appeal of the method lies in its ability to enforce
compatibility conditions in a weak fashion, while preserving a
high order of accuracy.

The most common approach for deriving discontinuous Galer-
kin methods is to seek a weak statement of the continuum prob-
lem via a weighted-average approach, but allowing the test and
shape functions to be discontinuous across element interfaces.
This leads to undefined interelement terms or numerical fluxes,
which are chosen to enforce the consistency of the numerical

scheme. A common problem encountered in the formulation of
discontinuous Galerkin methods is the non-uniqueness of the dis-
crete problem solution and the appearance of spurious energy at
element interfaces, a problem that was identified in the early con-
tribution by Nitsche �9�, who introduced a stabilization term on
the boundary to enforce weakly the homogeneous Dirichlet
boundary condition. Stabilization is now frequently achieved
through a quadratic boundary term. The formulation of alternative
numerical fluxes and stabilization terms is subject to the require-
ments of consistency and stability, but is otherwise unrestricted.
This strategy for deriving discontinuous Galerkin formulations
has been widely used in fluid mechanics and comprehensively
discussed by Cockburn in �3�. Arnold et al. �10� have analyzed the
different numerical fluxes and stabilization terms that have been
proposed for the Poisson equation. Brezzi et al. �11� have pro-
vided a rigorous derivation of a consistent and stable formulation
resulting in average numerical fluxes as proposed by Bassi and
Rebay �12�.

More recently, Brezzi et al. �13� proposed a new framework to
derive these terms. The basic idea is to start from a continuous
weighted averaging inside each element and to weigh the equa-
tions for the jumps at the element interfaces by suitable operators.
The choice of these operators is constrained by conditions to en-
sure uniqueness of the solution and stability of the method. The
resulting linear combination of these equations constitutes the
weak formulation of the problem.

An alternative strategy for formulating discontinuous Galerkin
methods for elliptic problems is to start from an energy functional
leading to a variational statement of the problem. This approach
was first presented by Lew et al. �5� in the context of linear elas-
ticity and recently extended to nonlinear elasticity in �6,7�. The
fact that the numerical fluxes and the stabilization terms arise
naturally from the variational approach is particularly advanta-
geous in large-deformation elasticity since it automatically en-
sures the consistency.

It is thus timely and appropriate to establish the parallel be-
tween these alternative formulation strategies and to identify and
investigate their limitations and advantages.

2 Variational Approach
The variational formulation of discontinuous Galerkin methods

for large deformations closely follows the work presented in �6�.
The starting point of this approach is a three-field functional al-
lowing for interelement discontinuities.

Let us consider B0�R3 the region of space occupied by a body
in its reference configuration. For simplicity, we assume that this
body is not subjected to body forces. Its surface boundary �B0 is
the union of a part �DB0 constrained by imposed displacements �̄

and a part �NB0 subject to surface tractions T̄.
Let N be the unit surface normal in the reference configuration,

P the first Piola-Kirchhoff stress tensor, �0 the gradient operator
with respect to the reference frame, and let � be the deformation
mapping. The continuum problem is governed by the following
equations stated in material form

�0P = 0 in B0 �1�

� = �̄ on �DB0 �2�

P · N = T̄ on �NB0 �3�

Let us assume P=�W /�F, where F=�0� are the deformation gra-
dients. Therefore, Eqs. �1�–�3� constitute the Euler-Lagrange
equations corresponding to the three-field Hu-Washizu-de
Veubeke �14–16� energy functional I�� ,F ,P� :H1�B0�
� �H0�B0��2� �H0�B0��2→R
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I��,F,P� =�
B0

�W�F� + P:��0� − F��dV0 −�
�DB0

��

− �̄� · P · NdS0 −�
�NB0

T̄ · �dS0 �4�

where H1�B0�, �H0�B0��2 are the appropriate Sobolev spaces.
Let us consider a finite element discretization B0h=�e=1

E �0
e ap-

proximating the reference configuration B0. Subscript I denotes
the boundary between the elements. Then, ��0

e

=�D�0
e ��N�0

e ��I�0
e and �IB0h= ��e=1

E ��0
e�\�B0h

. A finite-
dimensional piecewise polynomial approximation �h ,Fh ,Ph of
the solution is defined in the spaces

Xh
k = ���h � L2�B0h�����h��0

e�Pk��0
e�∀�0

e�B0h�� with

Xhc

k = ���h � �Xh
k�����h��DB0h

=0�� �5�

Eh
k = ��Fh � �L2�B0h��2���Fh��0

e�Pk��0
e�2∀�0

e�B0h�� with

Ehc

k = ��Fh � �Eh
k����F��NB0h

=0�� �6�

Sh
k = ��Ph � �L2�B0h��2���Ph��0

e�Pk��0
e�2∀�0

e�B0h�� with

Sh
k

c = ��Ph � �Sh
k����Ph��NB0h

=0�� �7�

where we have also expressed the respective constrained spaces.
The discrete approximation Ih��h ,Fh ,Ph� of the energy functional
�4� may then be derived from the approximate fields �5�–�7� and
the domain discretization B0h

Ih:Xh
k � Eh

k � Sh
k → R:Ih��h,Fh,Ph�

= 	
e

E �
�0

e
W�Fh� + Ph:��0�h − Fh�dV0 − 	

e

E �
�N�0

e
T̄ · �hdS0

− 	
e

E �
�D�0

e
��h − �̄h� · Ph · NdS0

−
1

2	
e

E �
�I�0

e
��h − �h

ext� · Ph · NdS0 �8�

The last term of Eq. �8� enforces weakly the interelement compat-
ibility, where �h

ext represents the deformation of neighboring ele-
ments. The factor 1

2 has been introduced in order to avoid dupli-
cation of the contribution of this term to the total energy. Let us
now introduce the jump 
•� and mean �• operators defined on the
space of the trace of functions which can possibly adopt multiple
values on the interior boundary TR��IB0h�=�e=1

E �L2��I�0
e��


•�,�•:�TR��IB0h��1 or 2 → �L2��IB0h��1 or 2:
•�

= •+ − •−,�• =
1

2
�•+ + •−� �9�

In these expressions, the bullet represents a generic field

•± = lim
�→0+

• �X ± �N−� ∀ X � �IB0h �10�

and N− is conventionally defined as the reference outward unit
normal of ��0

e. Equation �8� can then be rewritten as

Ih:Xh
k � Eh

k � Sh
k → R:Ih��h,Fh,Ph�

=�
B0h

�W�Fh� + Ph:��0�h − Fh��dV0 −�
�NB0h

T̄ · �hdS0

−�
�DB0h

��h − �̄h� · Ph · NdS0 +�
�IB0h


�h� · �Ph · N−dS0

�11�
The weak formulation of the equations of equilibrium, compatibil-
ity, and constitutive behavior are obtained by taking the first varia-
tions of Ih with respect to its arguments

0 =�
B0h

Ph:�0��hdV0 −�
�NB0h

T̄ · ��dS0

+�
�IB0h


��h� · �Ph · N−dS0 ∀ ��h � Xhc

k �12�

0 =�
B0h

�Ph:��0�h − Fh�dV0 −�
�DB0h

��h − �̄h� · �Ph · NdS0

+�
�IB0h


�h� · ��Ph · N−dS0 ∀ �Ph � Shc

k �13�

0 =�
B0h

�2Fh
�W�Ch�

�C
− Ph�:�FhdV0 ∀ �Fh � Ehc

k �14�

where 2�W�C� /�C=S is the second Piola-Kirchhoff stress tensor
and C=FTF is the right Cauchy-Green deformation tensor. The
constitutive law �14� may clearly be enforced strongly, leading to
the definition P�Fh�=FhS�Ch�=Fh2�W�Ch� /�C. An assumed
form of the deformation gradients is adopted as proposed by
Brezzi et al. �11� �see also �5��

Fh = �0�h + R�̄h
�
�h�� �15�

where the tensorial operator R�̄h
:L2��IB0h�→Eh

k is defined as

�
B0h

R�̄h
�
v��:�dV0 =�

�IB0h


v� · �� · N−dS0

+�
�DB0h

��̄h − v� · � · NdS0 ∀ � � Sh
k ,

�16�

With this definition of the discrete deformation gradients the com-
patibility condition �13� is satisfied automatically. The non-local
character of the average stresses �P�Fh� resulting from Fh, may
by circumvented by following Brezzi et al. �11�, who proposed the
use of the lifting operator rs�̄h

:L2��IB0h�→Eh
k

�
B0h

rs�̄h
�
v��:�dV0

=��s


v� · �� · N−dS0 ∀� � Sh
k and ∀ s � �IB0h

�
s

��̄h · � · N − v · � · N�dS0 ∀� � Sh
k and ∀ s � �DB0h

0 ∀� � Sh
k and ∀ s � �NB0h

�
�17�

where “s” is an arbitrary element side. In �6�, the following form
of the deformation mapping was proposed:
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Fh = �0�h + 	
s

Ns

rs�̄h
�
�h�� and Ch = Fh

TFh in �0
e �18�

Fs = �0�h + �rs�̄h
�
�h�� and Cs = Fs

TFs on s � ��0
e �19�

where Ns is the number of element sides and � is a parameter
responsible of enforcing the stability of the numerical scheme.
Here and subsequently, it will be assumed without loss of gener-
ality that Dirichlet boundary conditions are enforced strongly as in
conventional finite element approaches, i.e.

�h = �̄ ∀ X � �DB0h which implies rs�̄h
= 0 ∀ s � �DB0h

�20�

as the main interest is in the treatment of interelement disconti-
nuities.

Following the approach presented in �6�, it is assumed that the
displacement jumps at element interfaces are small compared to
the deformation and the evaluations of the constitutive rules P�Fh�
and P�Fs� are linearized:

P�Fh� � P��0�h� + C��0�h�:�Fh − �0�h�

P�Fs� � P��0�h� + C��0�h�:�Fs − �0�h� �21�

where C=�P /�F is the Lagrangian tangent modulus. It should be
carefully noted that the linearization is done with respect to the
displacement jumps and not the bulk deformation gradients.
Therefore, the nonlinear response is unaffected �6�. Using Eqs.

�17� and �21�, and denoting F̄h=�0�h and all tensorial quantities

evaluated at F̄h with the convention •̄= • �F̄h�, the volume integral
in Eq. �12� can be rewritten as

�
B0h

P�Fh�:�0��hdV0 =�
B0h

P̄:�0��hdV0

+�
�IB0h


�h� · �C̄:�0��h · N−dS0

�22�

while the term concerning the internal boundary can be rewritten
as

	
s
�

s��IB0h


��h� · �P�Fs� · N−dS0

=�
�IB0h


��h� · �P̄ · N−dS0

+ 	
s
�

s��IB0h


��h� · ��C̄:rs�̄h
�
�h�� · N−dS0 �23�

By virtue of Eq. �17�, the last term in �23� can be rewritten as

	
s
�

s��IB0h


��h� · ��C̄:rs�̄h
�
�h�� · N−dS0

= 	
s
�

B0h

rs�̄h
�
��h��:�C̄:rs�̄h

�
�h��dV0

= 	
s
�

s��IB0h


�h� · ��C̄:rs�̄h
�
��h�� · N−dS0 �24�

which exposes the symmetry of the stabilization term with respect
to 
�h� and 
��h�. Recalling that rs�̄h

is dimensionless, on the
boundary we can assume that

��C̄:rs�̄h
�
�h�� = N− · ��C̄ ·


�h�
hs

∀ X � �IB0h �25�

where hs is a characteristic length of the mesh and where � in-
cludes a multiplicative constant. Using this last result, the final
stabilized weak formulation is obtained from Eqs. �12�, �22�, and
�23� and consists in finding ��Xh

k such that ∀��h�Xhc

k

0 =�
B0h

P̄:�0��hdV0 +�
�IB0h


�h� · �C̄:�0��h · N−dS0

−�
�NB0h

T̄ · ��hdS0+�
�IB0h


��h� · �P̄ · N−dS0

+ 	
s
�

s��IB0h


��h� � N− · � �

hs
C̄� · 
�h� � N−dS0 �26�

The consistency and stability of this formulation were demon-
strated theoretically and verified numerically in �6�. It was found

that the symmetrization term ��IB0h

�h� · �C̄ :�0��h ·N−dS0 does

not contribute to ensuring stability and, thus, can be neglected for
ease of implementation. Numerical stability is guaranteed pro-
vided that ��Ck, where Ck�0 is a constant depending only on
the polynomial degree k of the approximate solution. The conver-
gence rate of the error with the mesh size is of the order k.

An important aspect of the variational approach for formulating
discontinuous Galerkin methods, is that the numerical flux and the
stabilization term arise naturally from the variational principle.
The particular choice of functional in the formulation proposed
has led to the same average numerical fluxes as the ones proposed
by Bassi and Rebay �12�, see also Lew et al. �5�.

In the next section we investigate under what conditions the
same formulation can be obtained via a weak statement of the
differential equations governing the large deformations of solids.

3 Approach Based on a Weak Statement of the Con-
tinuum Equations

The formulation of discontinuous Galerkin methods for nonlin-
ear mechanics may also be based on a weak statement of the
continuum equations by the standard approach of multiplying the
equilibrium equations �1� by a suitable test function followed by
integration in the domain. However, in the discontinuous Galerkin
case, the test functions are allowed to be discontinuous across
domain boundaries and the integration is carried out in each sub-
domain �0

e in a piecewise fashion. The weak solution is obtained
by finding Ph�Sh

k such that

	
e
�

�0
e

�0 · Ph · ��hdV0

= 	
e
�

�0
e

− Ph:�0��hdV0 + 	
e
�

��0
e

��h · Ph · NdS0

= 	
e
�

�0
e

− Ph:�0��hdV0

+ 	
e
�

��0
e��NB0h

��h · T̄dS0

+ 	
e
�

��0
e��IB0h

��h · Ph · NdS0

= 0 ∀ �� � Xhc

k �27�

where we have used the divergence theorem, the equilibrium of
the traction on the Neumann boundary �3� and the definition of the
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constrained space Xhc
k on the Dirichlet boundary �7�.

The defining characteristic of discontinuous Galerkin methods
is that both the test functions ��h and the stress tensor Ph are
allowed to have finite jumps on the interelement boundary �IB0h.
The weak enforcement of equilibrium and compatibility on �IB0h

is achieved by introducing a numerical flux h�Ph
+ ,Ph

− ,N−� depen-
dent on the limit values on the surface of the neighboring ele-
ments, such that

	
e
�

��0
e��IB0h

��h · Ph · NdS0 → −�
�IB0h


��h� · h�Ph
−,Ph

+,N−�dS0

�28�

Although there is, in principle, significant freedom in the choice
of h, consistent formulations require

h�P,P,N� = P · N and h�Ph
−,Ph

+,N−� = − h�Ph
+,Ph

−,N+� �29�

where P is the exact solution. The interelement boundary term
may be rewritten using �9� and �10� as

	
e
�

��0
e��IB0h

��h · Ph · NdS0

= −�
�IB0h


��h · Ph� · N−dS0

= −�
�IB0h


��h� · �Ph · N−dS0 −�
�IB0h

���h · 
Ph� · N−dS0

�30�

Comparing this relation with Eq. �28�, an obvious choice for h is

h�Ph
−,Ph

+,N−� = �Ph · N− �31�

The last term of Eq. �30� may be neglected because only compat-
ibility of the displacements needs to be enforced. This form of the
numerical flux was proposed for the scalar elliptic equation by
Bassi and Rebay �12�. A complete discussion on alternative nu-
merical flux formulations has been presented by Arnold et al. �10�.
The weak statement of equilibrium consisting of finding Ph�Sh

k

�
B0h

Ph:�0��hdV0 −�
�NB0h

��h · T̄dS0

+�
�IB0h


��h� · h�Ph
−,Ph

+,N−�dS0 = 0 ∀ ��h � Xhc

k

�32�

must be accompanied by a �weak� enforcement of displacement
compatibility and must be enforced weakly on �IB0h, which also
ensures numerical stability. To this end, the compatibility equation
�h

−−�h
+=0 on �IB0h is multiplied by a test function �Ph which, by

similar arguments used in the weak formulation of the equilibrium
equation, leads to the definition of a new flux g such that

�
�IB0h


�h� · g��P−,�P+,N−�dS0 = 0 ∀ �P � Shc

k �33�

The constitutive law is enforced strongly i.e.

Ph = P̄ =
�W

�F
��0�h� �34�

�Ph = �P̄ = C̄�0��h �35�

where C̄= ��P /�F��Ph�, and it is assumed that �0��h�Shc

k . It will
be shown below that this judicious choice of a subset of the ad-
missible stress space Shc

k avoids the linearization with respect to

the displacement jump, by contrast to the variational formulation
of Sec. 2.

The weak form of the nonlinear elasticity problem resulting
from the addition of Eqs. �32� and �33� is thus to find �h�Xh

k

such that

�
B0h

P̄:�0��hdV0 −�
�NB0h

��h · T̄dS0

+�
�IB0h


��h� · h�P̄−,P̄+,N−�dS0

+�
�IB0h


�h� · g�C̄−�0��h
−,C̄+�0��h

+,N−�dS0

= 0 ∀ ��h � Xhc

k �36�

Unfortunately, this formulation is numerically unstable, even for
consistent numerical fluxes. A common solution to this problem in
this type of weak formulation approach is to introduce a quadratic
term in 
�h�, 
��h�. Whereas in scalar problems this can be
achieved by simply adding a term proportional to the scalar prod-
uct 
�h� · 
��h�, an appropriate term in the context of nonlinear
elasticity must take into account the tensorial character of the
virtual work at the interelement boundary and stabilize general
displacement discontinuities. A simple way to achieve this is to

choose a stabilization term proportional to 
�h� · C̄ · 
��h�. The fi-
nal weak formulation of the problem is to find �h�Xh

k such that

�
B0h

P̄:�0��hdV0 −�
�NB0h

��h · T̄dS0

+�
�IB0h


��h� · h�P̄−,P̄+,N−�dS0

+�
�IB0h


�h� · g�C̄−�0��h
−,C̄+�0��h

+,N−�dS0

+�
�IB0h

�
��h� � N−:� �

hs
C̄�:
�h� � N−�dS0

= 0 ∀ ��h � Xhc

k �37�

This approach to the stabilization of discontinuous Galerkin for-
mulation in which � plays the role of a penalty parameter is com-
monly referred to as Interior Penalty method �17�. For numerical
fluxes of the form �31�, expression �26� is recovered, which dem-
onstrates that the assumptions �34� and �35� and the introduction
of a quadratic term correspond to the linearization of the stress
tensor in Eq. �21�.

4 Formulation From the Framework of Brezzi et al.
[13]

In a recent paper, Brezzi et al. �13� have proposed an alternative
approach for deriving discontinuous Galerkin methods for the sca-
lar elliptic equation. The main idea is to use as starting point a
weak formulation of the continuum equations inside the elements
as an individual problem. In addition, interelement compatibility
and equilibrium are enforced weakly by the introduction of suit-
able operators. The resulting weak formulation of the problem
becomes finding �h�Xh

k such that
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e
�

�0
e

�0 · P��0�h� · B0���h�dV0 +�
�IB0h


�h� · B1���h� · N−dS0

+�
�IB0h

N− · 
P��0�h�� · B2���h�dS0 = 0 ∀ ��h � Xhc

k

�38�

where B0, B1, and B2 are operators from Xhc

k to L2�B0h�, to
�TR��IB0h��2 and to TR��IB0h� respectively. Conditions on these
operators required to ensure uniqueness and stability of the solu-
tion are discussed in �13�. One possible choice for the operators is

B0���h� = − ��h �39�

B1���h� =
�

hs
�C̄:
��h� � N− �40�

B2���h� = − ���h �41�

Introducing these values in Equation �38� and integrating by parts
leads to finding �h�Xh

k such that

− 	
e
�

��0
e

N · Ph · ��hdS0 + 	
e
�

�0
e

Ph:�0��hdV0

−�
�IB0h

N− · 
P��0�h�� · ���hdS0 +�
�IB0h


�h�

� N−:
�

hs
�C̄:
��h� � N−dS0 = 0 ∀ ��h � Xhc

k �42�

Using Eqs. �3� and �5�, this last relation is rewritten as finding
�h�Xh

k

�
B0h

Ph:�0��hdV0 +�
�IB0h

N− · �P��0�h� · 
��h�dS0

+�
�IB0h


�h� � N−:
�

hs
�C̄:
��h� � N−dS0

=�
�NB0

T̄ · ��hdS0 ∀ ��h � Xhc

k �43�

If the stress tensor is computed directly from the compatible de-
formation gradient, the kinematic compatibility inside the ele-

ments is strongly enforced and one has P̄=Ph=P��0�h�. The re-
sulting formulation of the problem therefore corresponds to �26�
without the symmetrization term. The choice

B1���h� =
�

hs
�C̄:
��h� � N− + �C̄:�0��h �44�

leads to the recovery of the symmetrization term. It is clear that in
this approach, there is no need to assume the form of the numeri-
cal fluxes, as they arise naturally by a specific suitable choice of
interelement boundary operators. It is also appears clearly from
this formulation that the symmetrization term is not needed, as is
also demonstrated in �6�.

5 Conclusions
In this work, three different approaches for developing discon-

tinuous Galerkin methods for nonlinear solid mechanics have
been considered and compared.

In the first approach, the formulation results from a variational
statement of a general energy functional combined with a linear-

ization of the stress tensor with respect to the displacement jumps.
The specific forms of the numerical fluxes and stabilization term
result naturally from the variational statement.

The second approach consists of a standard weighted-average
formulation resulting in a weak statement of the continuum equa-
tions, but where both shape and weight functions are allowed to
have finite discontinuities inside the domain. In this case, the in-
terelement fluxes and stabilization terms are undefined, which
opens the ground for proposing different numerical fluxes and
stabilization terms. If, in particular, average numerical fluxes and
a quadratic stabilization term are considered, and if the stresses in
the element interiors are computed from the compatible deforma-
tion gradient, then the formulation obtained from the variational
approach is recovered.

An alternative third strategy is to multiply the equilibrium and
compatibility equations by suitable operators on the test functions.
The combination of the resulting products leads to a new weak
formulation, once the operators are selected. A suitable choice of
the operators ensures consistency and stability of the formalism. It
has been shown that the formulation obtained from the variational
approach corresponds to a particular choice of these operators.

It may therefore be concluded that the variational formulation
leads naturally to a well defined discontinuous Galerkin method
but restricts the expression of the numerical fluxes and the stabi-
lization term. The main advantage of the variational formulation
lies in the automatic satisfaction of consistency and linearized
stability in the nonlinear range as it was shown in �6�.
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Background: Biathlon is a nordic sport that combines cross-
country skiing with rifle marksmanship. It was reported that
standing shooting was significantly affected because skiing exer-
cise usually decreased the postural control of biathletes and in-
creased the shooting time. Another hypothesis that may explain
the decrease of one’s shooting accuracy after a cession of cross-
country skiing could be linked with mechanical factors. The goal
of the present study was to examine the influence of negative
temperatures on the trigger mechanism and on the ballistic re-
sponses of the bullet. Method of approach: In order to determine
the possible variations of the force required for triggering, five
biathlon rifles were equipped with strain gauges fixed on the trig-
ger. A thermostat vessel was used to control the temperature
changes at room temperature �+20°C� �+68°F� until −20°C
�−4°F�. Concerning the ballistic measurements, eight series of
five shots were performed at +20°C �+68°F�, at −3°C
�+26.6°F�, at −10°C �+14°F�, and at −20°C �−4°F�. The shoot-
ing precision was assessed by determining the group diameter
(GD) and the shooting score (Sc). Results: The results showed that
from +20°C �+68°F� until −8°C �+17.6°F�, the triggering force
was equal to 5 N �1.12 lb�, whereas at −20°C �−4°F�, a trigger-
ing force of 8 N �1.8 lb� was required. The increase of the trig-
gering force that was found under −8°C �+17.6°F� could be
caused by the difference between the coefficients of expansion of
the different materials constituting the trigger mechanism. Con-
cerning the ballistic measurements, GD at room temperature was
significantly lower �P�0.05� than −3°C �+26.6°F�, −10°C
�+14°F�, and −20°C �−4°F�. Furthermore, Sc was significantly
better at +20°C �+68°F� �P�0.05� compared to −3°C
�+26.6°F�, −10°C �+14°F�, and −20°C �−4°F� conditions. Con-
clusion: It can be supposed that the degradation of GD and Sc
could be due to the formation of frost in the barrel and by the
difference of the expansion coefficient of the bullet-barrel materi-
als. Consequently, both mechanical responses could partly explain
the shooting accuracy impairment observed in negative tempera-
ture shooting conditions. �DOI: 10.1115/1.2712229�

Keywords: biathlon shooting, rifle mechanism, trigger, ballistic,
temperature

1 Introduction
Biathlon is a nordic sport that combines cross-country skiing

with rifle marksmanship. Biathlon competitions include cross-
country skiing sequences of 2500 m �2285.97 yd� to 5000 m
�4571.95 yd�, which alternate with 2–4 periods of shooting.
Shooting is performed in prone or standing position. Five shots
are allowed to hit five targets positioned 50 m �45.19 yd� away
from the firing line. In relays competitions, eight shots are allowed
to hit the five targets. For prone shooting, the targets are 45 mm
�1.77 in. � in diameter and in standing position the targets are
115 mm �4.52 in. � in diameter. At the end of the shooting period,
each missed target incurs a 150 m penalty lap �137.15 yd� or a
1 min penalty time depending on the type competition. The lowest
cumulative time �ski time, shooting time, and penalties� wins. The
best performance in biathlon is obtained by maximizing the skiing
velocity and by minimizing the time spent at the firing line and the
penalty time. Therefore, the shooting performance is important in
the final result.

Biathlon shooting is also a very complex motor activity requir-
ing good postural stability and rapid execution �1�. Yet, the skills
required for prone and standing shooting are not identical �2�.
Shooting performance while prone requires the ability to discrimi-
nate �i.e., discrimination between perfect and approximate aim-
ing�, as well as a fine motor control �i.e., triggering action without
hand or arm movement�. In standing shooting, the stability of the
body-rifle system is an important variable that characterizes elite
biathletes �3�. However, in competition, it was reported that stand-
ing shooting was significantly affected because skiing exercise
decreased the postural control of biathletes �4,5� and it increased
the shooting time �6�. A significant correlation has been reported
between the postural control and the shooting performance in
standing position �3–7�.

However, another hypothesis that may explain the decrease of
the shooting accuracy that is observed after cross-country skiing
could be linked with mechanical factors. Yet, biathletes and
coaches often report that the negative temperatures impair the
shooting precision �8�. According to the International Biathlon
Union code of practice and for safety reasons, biathletes must
exert a minimum 5 N �1.12 lb� force on the trigger in order to
release the shot. Before competitions, this triggering value is
tested with a dynamometer by biathlon referees. However, as the
effects of negative temperatures on the triggering mechanisms and
the shooting ballistic have never been clearly identified, it may be
possible that the temperature changes observed during competi-
tion could impair the 5 N �1.12 lb� triggering force but also the
ballistic responses of the bullet during shooting. Therefore, the
purpose of the present study was to examine both the influence of
the negative temperatures on the trigger mechanism and on the
ballistic responses of the bullet.

2 Methods

2.1 Instrumentation. Five biathlon competition rifles �An-
schütz Fortner Biathlon 1827, Germany� were tested in the present
study. The triggers of each rifle were partially modified by making
on the trigger a flat and rectangular beam �Fig. 1�. The law of the
strength of materials have been used to determine the section of
the trigger. This section has a stiffness corresponding to the dif-
ferent values of the force applied on the trigger. Therefore, the
elastic range of the material has been respected. Then, an active
unidirectional strain gauge �CEA-06-125UN-350, Vishay Mi-
cromesure Society, USA� was stuck behind the trigger.

A scanner �model 5100 Vishay Instrument, Vichay Micromea-
sure Society, USA� with 25 channels attached to a computer
�Compaq� that is equiped with a software �System 5000.Stress
analysis data system, Vichay Micromeasure Society, USA� has
been used to obtain data of the strain gauges. Scanner permits a
mount in full bridge. The program of extensometric measures per-
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mits to enter both characteristics of strain gauges and their graphs
of temperature’s compensations corresponding to each type of
strain gauges in order to work out the correction of the apparent
deformation. Therefore, if some measures are carried out at posi-
tive or negative temperatures, which are different from the refer-
ence condition at +20°C �+68°F�, then a correction of the appar-
ent deformation is necessary. Each box of strain gauges is
composed of a signalitic card. The graph of deformation depend-
ing on temperature is valid only for the type of strain gauges,
indicated on the lot they belong to, as they are stuck on the used
metal. The corrected deformation ��� is obtained by substracting
the measured deformation ��i� from the apparent deformation
��apparent�, i.e.; �=�i−�apparent.

Thus, microdeformations due to the force applied on the trigger
were obtained. The strain gauges were previously calibrated by
using a tension-compression machine �Instron, UK� with a load
cell of 10 N �2.24 lb�. Then a conversion of microdeformations
into force was calculated as

x�� = nF

where �� corresponds to microdeformations and F corresponds
to the force �N� �or lb�. One microstrain corresponds to a force of
0.04 N �0.009 lb�. In order to achieve the threshold of the trigger
action, the necessary force in the middle part of the trigger is of
125��, i.e., 125�0.04=5 N �1.12 lb�.

The ballistic measurements were performed with a test stand in
a thermostat vessel, which permitted the reproduction of shooting
conditions at negative temperatures. A frame, made of steel, with
a rectangular and tubular section, was realized by mechanic weld-
ing and surrounded the thermostat vessel in order to secure the
rigidity of the whole; it also permitted the fixing of the testing
banc, thus securing the support of the rifle. The system that sup-
ported the rifle was made up of thread extensions �No. 1 of Fig.
2�, which permitted the adjustment of the initial alignment of the
rifle. Thus frame and testing banc could if necessary subsequently
enable the mounting or the addition of accessories. The hanging
system was realized by using extensions �No. 2 of Fig. 2� and
some “Hasberg” tape �foils� �No. 3 of Fig. 2� which was of rect-

angular shape; it had a thickness of 0.1 mm and was 25 mm wide.
Tapes significantly increased the radial stiffness and permitted the
longitudinal degree of freedom of the rifle. In order to fix the rifle,
a function modulus that would reduce the effects of mechanical
tightening on the level of the rifle was realized. The junction to the
rifle was made through two parallelepipedic blocks �No. 4 of Fig.
2�, which had been machined in their middle in “V” shape. These
two blocks were realized with “ertalon,” because this material has
got stable mechanical and thermic characteristics and an almost
nonexistant thermic conductivity. In order to secure the radial sup-
port, two stiffeners—one at the back, the other in the front—were
created and placed equally on each side of the rifle �No. 5 of Fig.
2�. They were adjustable and were provided with some miniature
accuracy ball bearing, which were placed in linear contact with
the rifle. Therefore, this mount authorized only the longitudinal
degree of freedom of the rifle. This system permitted a perfect
stability of the rifle during the shooting. Each shooting of five
bullets was carried out according to stages of temperatures ob-
tained at a steady rate. This entity was in a position of absolute
stability. Therefore, in this case, there was no contraction or ther-
mic stress effects.

The closing lid of the thermostat vessel was made of several
elements that could be dismantled simultaneously. It was also
composed of portholes in order to visualize the loading manoeu-
vring. So the rifle was isolated inside the thermostat vessel during
the shooting tests at negative temperatures.

The thermostat vessel with its testing banc were situated 50 m
�45.71 yd� away from a paper target in a covered shooting range
�Fig. 3�. A small hole was performed in the vessel to allow the
passage of the bullet. Only high quality bullets were used in the
present study. All the bullets came from the same manufacturer,
trademark and manufacturing batch.

2.2 Test Protocol. In order to measure the force required for
triggering, the procedure was performed at room temperature
�+20°C� �+68°F�. Then a rifle was placed in a thermostat vessel
and the triggering forces were assessed at +20, +15, +10, +5, 0,
−3, −5, −8, −10, −12, −15, −18, and −20°C �+68, +59, +50, +41,
+32, +26.6, +23,+17.6, +14, +10.4, +5, +0.4, and −4°F� because
this last value corresponds to the extreme temperature authorized
in biathlon competitions. According to the International Biathlon
Union code of practice, the measures were performed in the
middle part of the trigger. Bullets were placed in the same condi-
tions of temperature as the rifle. Barrels were equipped with a
probe of temperature in order to check that the expected tempera-
ture was attained. Therefore, the external temperature of the barrel

Fig. 1 Trigger before „a… and after modification and sticking of
the gauge „b…

Fig. 2 Hanging system of the rifle
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was taken into consideration. Furthermore, the reproducibility of
the measures was tested during eight measurements at every tem-
perature. The same protocol was used for the four others rifles.

The ballistic measurements were performed by shooting eight
series of five shots at +20°C �+68°F�, −3°C �+26.6°F�, −10°C
�+14°F�, and −20°C �−4°F�. The shooting precision was as-
sessed by determining �in mm� �in in.� the GD corresponding to
the smallest circle that encompassed each series of five rounds,
and the Sc that corresponds to the distance �in mm� �in in.� of the
mean of each shooting round series from the center of the best
mean GD value measured at +20°C �+68°F� �Fig. 4�.

2.3 Statistics. The data are reported using mean and standard
deviation �SD�. A one-way analysis of variance with repeated
measure and Tukey post hoc test were used to measure the effects
of temperature on the ballistic responses. Statistical significance
was accepted at the P�0.05 level.

3 Results

3.1 Influence of the Temperature on the Mechanism (Fig.
5). From +20°C �+68°F� until 0°C �+32°F�, the triggering force
was equal to 5 N �1.12 lb� for each of the five triggers. Similarly
from −3°C �+26.6°F� until −8°C �+17.6°F�, the triggering force
was about of 5 N �5.01 SD 0.02�, �1.12 lb� �1.126 SD 0.0045� for
the five triggers. However, under this temperature, the triggering
force increased exponentially and attained 8 N �1.8 lb� at −20°C
�−4°F� �8.02 SD 0.05�, �1.80 SD 0.011�. Note that from −10°C
�+14°F� some frost appeared on the trigger mechanism.

3.2 Influence of the Temperature on the Ballistic (Figs.
6(a) and 6(b)). A significant increase of group diameter
was found �F�3�=11.17, P�0.0001�. Post hoc test revealed
that at +20°C �+68°F� �8.8 SD 0.8 mm� �0.34 SD 0.031 in.�

Fig. 3 Experimental mounting

Fig. 4 Measurement „in mm… of the GD, and the Sc. MGD�mean group
diameter.
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shooting group diameter was significantly lower �P�0.05� than
−3°C �+26.6°F� �16.7 SD 1.2 mm� �0.65 SD 0.039 in.�, −10°C
�+14°F� �17.1 SD 2.1 mm� �0.67 SD 0.082 in.� and −20°C
�−4°F� �15.9 SD 6.2 mm� �0.62 SD 0.24 in.� measurements.

Concerning the shooting score, a significant decrease was found
�F�3�=19.72, P�0.0001�. At +20°C �+68°F� �0.9 SD 1.1 mm�
�0.035 SD 0.043 in.� the shooting score was significantly better
�P�0.05� than at −3°C �+26.6°F� �3.9 SD 1.2 mm� �0.15 SD
0.047 in.�, at −10°C �+14°F� �4.6 SD 1.5 mm� �0.18 SD
0.059 in.�, and at −20°C �−4°F� �6.7 SD 2.4 mm� �0.26 SD
0.09 in.�. Furthermore at −3°C �+26.6°F�, the shooting score was
also significantly better �P�0.05� than in the −20°C �−4°F� con-

dition. Note that the entire shots performed in negative tempera-
tures were situated under the entire shot rounds performed at
+20°C �+68°F�.

4 Discussion

4.1 Influence of Temperature on the Mechanism. The re-
sults of the present study revealed that the triggering force under
−8°C �+17.6°F� increased exponentially and attained 8 N
�1.8 lb� at −20°C �−4°F�. This increase of the triggering force
could be caused by the retraction of the pins of the triggering
mechanism. Thus, as the case of the trigger and the pins do not
have the same material �i.e., the case of the trigger is made of
aluminum while the pins are made of steel�, these different mate-
rials have a different coefficient of expansion �23.2 ppm/ °C
�12.9 ppm/ °F� for aluminum and 12.1 ppm/ °C �6.7 ppm/ °F�
for steel� �9�. The retraction of materials shows that frictions in-
crease with the decrease of the temperature �Figs. 7�a� and 7�b��.
Knowing aluminum retracts more than steel, it can therefore be
understood that the free motion decrease when temperatures de-
crease �Fig. 7�b��. Depending on the tolerances which are recom-
mended for the standard functioning of a pin in its alesage, these
tolerances could intervene with even less free motion in case the
temperature decreases even more. When both parts are associated
under −8°C �+17.6°F�, the increasing friction between the pins
and the case of the trigger mechanism could increase the trigger-
ing force. Consequently, this mechanical response may impair the
shooting accuracy of biathletes in low temperature conditions
while increasing the latency time between aiming and triggering
�Figs. 7�a� and 7�b��.

4.2 Influence of Temperature on the Ballistic. Concerning
the influence of negative temperatures on the ballistic responses,
the results showed a significant increase of the group diameter at
−3°C �+26.6°F�, −10°C �+14°F�, and −20°C �−4°F� compared

Fig. 5 Relationship between triggering force and tempera-
tures with five cases of triggers

Fig. 6 Mean values and SD of the group diameter „a… and the
shooting score „b… performed at different temperatures. *=P
<0.05 compared to +20°C „+68°F…; §=P<0.05 compared to
−3°C „+26.6°F… condition.

Fig. 7 Graph of retraction of aluminum and steel according to
temperature „a… and values of retraction of the different mate-
rials constituting the pins and the case of the trigger at +20°C
„+68°F… and −20°C „−4°F… „b…
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to +20°C �+68°F�. Furthermore, the more the shots are per-
formed in extreme negative temperatures the more the distance
between the results at the referential condition increase. It can be
supposed that the degradation of the group diameter and the
shooting score could be caused by the formation of frost in the
barrel. The materials’ difference of coefficient of expansion be-
tween the bullet and the barrel can also explain this degradation.
Yet, the lead of the bullet retracts more than the steel of the barrel
�the coefficient of expansion of lead is 29.3 ppm/ °C
�16.3 ppm/ °F�, whereas it is of 12.1 ppm/ °C �6.7 ppm/ °F� con-
cerning steel� �9�. Consequently, this difference of expansion co-
efficient could decrease the bullet’s propulsion during firing. The
frost and the difference between the coefficients of expansion
could influence the shooting ballistic that could be more or less
flat. However, this result must be interpreted with some caution
because the present experiment does not take into account the
possible effects of the atmosphere changes between the thermostat
vessel and the atmosphere of the shooting range that may affect
the external shooting ballistic.

To sum up, the results of the present study confirm the hypoth-
esis that the triggering force and the ballistic is affected by nega-
tive temperatures. Under −8°C �+17.6°F�, the temperature could
enhance the friction between the pins and the case of the trigger
mechanism, which increases the triggering force while increasing
the latency time between aiming and triggering. Furthermore, the
negative temperatures could increase the frictions between the
bullets and the barrel that influence the ballistic. Consequently,
both mechanical responses could partly explain the shooting ac-

curacy impairment observed in negative temperature shooting
conditions. After these thorough analysis of the material, some
tests with biathletes could be made at different temperatures in
order to couple the entity athletes material in a ulterior stage.
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The problem of uniform shocks interacting with free-standing
plates is studied analytically and numerically for arbitrary shock
intensity and plate mass. The analysis is of interest in the design
and interpretation of fluid–structure interaction (FSI) experiments
in shock tubes. In contrast to previous work corresponding to the
case of incident blast profiles of exponential distribution, all
asymptotic limits obtained here are exact. The contributions in-
clude the extension of Taylor’s FSI analysis for acoustic waves,
the exact analysis of the asymptotic limits of very heavy and very
light plates for arbitrary shock intensity, and a general formula
for the transmitted impulse in the intermediate plate mass range.
One of the implications is that the impulse transmitted to the plate
can be expressed univocally in terms of a single nondimensional
compressible FSI parameter. �DOI: 10.1115/1.2712230�

Keywords: uniform shock waves, fluid-structure interaction

1 Introduction
The reduction of impulse transmitted to structures subject to

blast loading provided by the fluid–structure interaction �FSI� ef-
fect was recognized in the early work of Taylor �1� who studied
the reflection of a blast wave with an exponential pressure profile
in the case of negligible fluid compressibility. Taylor �1� showed
that the impulse transmitted to the plate is reduced as the plate
mass decreases because lighter plates acquire velocity quickly
thus relieving the pressure acting on the surface of the plate. This
peculiar property of the response of light structures to blast loads
has been used in the design of sandwich panels with increased
resistance to underwater explosions �2–10�. As part of the conclu-
sions of the analysis, Taylor showed that the impulse transmission

depends on a single nondimensional parameter representing the
relative time scales of the blast overpressure and of the fluid–
structure interaction.

In previous work �11�, we extended Taylor’s results by incor-
porating the effect of compressibility, which is important in the
case of blast waves propagating in air. The contributions included:
the analysis of the asymptotic limits when the plate is very light
and very heavy, the identification of an extended nondimensional
FSI parameter which becomes relevant in the compressible range,
and a practical formula for calculating the impulse transmitted to
the plate for arbitrary plate weights and blast intensities. Whereas
the light plate asymptotic result was exact, the heavy plate
asymptotic result was approximate due to lack of an explicit so-
lution for the flow field of an exponentially decaying blast pres-
sure profile reflecting from a fixed boundary. An approximate
asymptotic result was obtained by assuming that each level of the
incident pressure reflected according to the Rankine–Hugoniot
shock jump conditions.

In this technical brief, we discuss the simpler case of free-
standing plates subject to uniform shock loading. The analysis
should prove useful in the design and interpretation of FSI experi-
ments using conventional shock tubes. It is shown that in the case
of uniform shocks, the asymptotic case of heavy plates can be
obtained exactly. As a first step, the analysis of the acoustic limit
is discussed in Sec. 2 resulting in an explicit relationship between
the transmitted impulse and the acoustic nondimensional param-
eter. Section 3 is devoted to the asymptotic analysis for heavy and
light plates for arbitrary shock intensities. In Sec. 4 a practical
formula interpolating the exact limits and encompassing the inter-
mediate range is also proposed and verified.

The analysis reveals that the FSI is governed by a nondimen-
sional parameter which is analogous to the acoustic parameter due
to Taylor but incorporates the state of compressibility of the fluid
and, thus, the intensity of the shock. Interestingly, it is found that
the dependence of the transmitted impulse ratio with the mass of
the plate collapses onto a single curve, independently of the shock
intensity. It is concluded that significant reductions in impulse
transmission are achievable by reducing the mass of the structure
facing the shock.

2 Exact Solution for Acoustic Waves
The derivation presented in this section is a direct extension of

Taylor’s analysis for exponentially decaying pressure profiles �1�
to the case of uniform waves. The problem setup is as follows. An
infinite uniform pressure wave of overpressure ps, propagating in
the positive x direction in a fluid medium with density �0, sound
speed a0, and pressure p0, impinges on an initially stationary plate
of mass per unit area mp located at x=0 m. The wave reaches the
plate at time t=0 s. The location of the plate is denoted by �
=��t�. The pressure on the right side of the plate is assumed to
stay constant and to be equal to the atmospheric pressure p0 at all
times.

Newton’s second law gives the equation of motion of the plate

mp
d2�

dt2 = p��,t� − p0 �1�

where p�� , t�− p0 is the overpressure acting on the plate. The one-
dimensional equation of motion for the fluid is

�
du

dt
= −

�p

�x
�2�

where the convective derivative is given by d /dt=� /�t+u�� /�x�
and the density �=��x , t�, the pressure p= p�x , t�, and the velocity
u=u�x , t� are all functions of both the particle location x and the
time t. Acoustic waves will cause only small perturbations around
the steady-state values, leading to: �=�0+ �̃, p= p0+ p̃, and �=0

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received July 4, 2006; final manuscript
received September 16, 2006. Review conducted by Robert M. McMeeking.

1042 / Vol. 74, SEPTEMBER 2007 Copyright © 2007 by ASME Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



+ �̃. The small pressure perturbation p̃ must then satisfy the wave
equation

�2p̃

�t2 − a0
2�2p̃

�x2 = 0 �3�

and therefore can be expressed as a sum of two waves propagating
to the left and to the right at the sound speed a0

p̃�x,t� = f�x − a0t� + g�x + a0t� �4�

Using Eqs. �1� and �2�, the function g is eliminated leading to

mp
d3�̃

dt3 + �0a0
d2�̃

dt2 = − 2a0f���̃ − a0t� �5�

If the shape f of the incoming wave is known then this equation

can be solved for �̃. For uniform shock waves the shape is given

by f��̃−a0t�= ps=const. The appropriate boundary conditions of
the differential Eq. �5� are

�̃�t = 0� = 0

d�̃

dt
�t = 0� = 0 �6�

d2�̃

dt2 �t = 0� =
f�0� + g�0�

mp

Since initially the plate is not moving and behaves as a rigid
boundary that reflects the wave completely, g�0�= f�0� and the
solution is

�̃ =
2psmp

�0
2a0

2
�e−

�0a0

mp
t − 1� +

2ps

�0a0
t �7�

The solution clearly shows that the time scale of the fluid structure
interaction is given by the time constant t*=mp /�0a0. As the inci-
dent pressure wave lacks an intrinsic time scale, we arbitrarily
choose a time scale ti and interpret it as the time elapsed from the
time of shock impact t=0. In what follows we consider the motion
of the system comprising the fluid and the plate up to the fixed
moment of time t= ti, which can be chosen arbitrarily. Following
Taylor �1�, one can define a nondimensional parameter �0= ti / t*

which compares the relative time constants of the fluid–structure
interaction t* and the incident wave ti.

The quantity Ii= psti represents the impulse carried by the inci-
dent pressure wave through the point x=0 up to the moment of
interest t= ti. By noting that the acceleration of the plate

d2�̃ /dt2�t�0�=2ps /mpe−��0a0/mp�t remains positive at all times,
one concludes that the maximum velocity and, therefore, the
maximum impulse of the plate occur at time t= ti. This maximum
impulse when expressed in terms of the nondimensional param-
eter �0 is

Ip

Ii
= 2

1 − e−�0

�0
�8�

Equation �8� is the uniform-wave analog to Taylor’s result for
exponentially decaying pressure waves �1�

Ip

Ii
= 2�0

�0 � �1−�0� �9�

where �0 is defined as above and ti is the decaying time of the
incident exponential pressure wave. In both cases lim�0→0�Ip / Ii�
=2, which represents the fact that for fixed rigid plates the inci-
dent wave is reflected completely.

3 Extension to the Compressible Range
The problem considered in the previous section can be ex-

tended to compressible flows by eliminating the assumption that
the overpressure of the incident wave is small. By contrast to the
acoustic limit, the resulting coupled problem of a compressible
nonlinear one-dimensional flow interacting with a plate is not
amenable to analytical treatment. Instead we follow the approach
in Ref. �11� and find the two asymptotic limits for heavy and light
plates. In the intermediate range, we extrapolate a curve from the
asymptotic limits and verify these results against numerical
computation.

3.1 Heavy Plate Asymptotic Limit. In contrast to the case of
exponential incident pressure waves considered in Ref. �11�, for
uniform incident pressure waves the impulse transmitted to heavy
plates may be found exactly. In the heavy plate limit the plate may
be considered as a fixed rigid boundary.

Figure 1 shows a schematic of the problem where a is the local
speed of sound, u is the local particle velocity, � is the local
particle density, p is the local pressure or overpressure, and U is
the shock wave speed. Subscripts s, r, and 0 are used to denote
states behind the incident shock, behind the reflected shock, and
atmospheric, respectively. Assuming that the fluid is an ideal ca-
lorically perfect gas with constant specific heats ratio equal to �,
which has been shown to be a realistic assumption even for very
strong explosions in air �12�, and using the Rankine–Hugoniot
relations it is found that �13�

�s = �0
�� + 1�ps + 2�p0

�� − 1�ps + 2�p0
�10�

Us = a0��� + 1�ps + 2�p0

2�p0
�11�

us = a0� 2ps

�p0
� ps

�� + 1�ps + 2�p0
�12�

Similarly for the reflected wave, the relations are

�r = �s

�ps + �p0

�� − 1�ps + �p0
�13�

Ur = us

�� − 1�ps + �p0

ps
�14�

pr = ps

�3� − 1�ps + 4�p0

�� − 1�ps + 2�p0
�15�

A direct consequence of these expressions is that the gas density
neither in the incident wave �s nor in the reflected wave �r can
grow unboundedly as the incident overpressure ratio ps / p0 be-
comes large. In the limit ps / p0→�, the incident density ratio
tends to ��+1� / ��−1�, while the reflected density ratio tends to
� / ��−1�. For air ��=1.4� these two ratios are 6 and 3.5, respec-

Fig. 1 Incident and reflected shock waves; „a… incident shock
wave, „b… reflected shock wave
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tively. Another known consequence of the shock reflection is that
the pressure reflection coefficient CR defined as �13�

CR =
pr

ps
=

�3� − 1�ps + 4�p0

�� − 1�ps + 2�p0
�16�

is also bounded, 2�CR� �3�−1� / ��−1� �or 2�CR�8 for air�.
The lower limit corresponds to weak acoustic waves and the upper
limit to very strong shocks. It should be emphasized that for air
the reflection coefficient CR departs from 2 for rather small over-
pressures. For example, CR=2.75 when ps= p0=1 atm, and there-
fore the use of results from the acoustic limit theory in the evalu-
ation of the effects of blast loads on structures cannot be justified,
as it has been pointed out recently �14,11�.

The impulse per unit area transmitted to the plate is the time
integral of the overpressure it experiences

Ip =�
0

ti

pr dt = prti �17�

Consequently the impulse transmission coefficient is equal to the
pressure reflection coefficient

Ip

Ii
=

prti

psti
= CR �18�

in direct contrast with the result for exponential pressure profiles
�11� in which it is always smaller. Another important difference is
that this result is exact, while the result for exponential pressure
profiles is approximate �11�.

3.2 Light Plate Limit. Following Ref. �11�, we first consider
the acoustic limit. In this case �0→� and the plate instanta-
neously reaches its final velocity

lim
�0→�

d�̃

dt
= lim

�0→�

2ps

�0a0
�1 − e−�0t � ti� =

2ps

�0a0
�19�

It is interesting to note that in the case of a uniform incident wave,
the velocity of a very light plate remains constant in time, whereas
in the case of an exponential profile the plate velocity decays
exponentially. From Eq. �19� the transmitted impulse is

lim
�0→�

Ip

Ii
=

2mp

�0a0ti
=

2

�0
�20�

and independent of time 0� t� ti.
Following Ref. �11�, we assume that the maximum transmitted

impulse in the nonlinear compressible range can be derived from
the plate velocity up at time 0+. Toward this end, we consider the
expansion wave produced by a fluid initially compressed at over-
pressure pr=CRps on a free surface which is initially at rest. In-
stantaneously upon reflection, the fluid state is characterized by
the normal shock reflection on a fixed boundary �ur=up=0� inde-
pendently of the plate mass mp. The reflected state can be charac-
terized as

pr = ps

�3� − 1�ps + 4�p0

�� − 1�ps + 2�p0
�21�

�r = �0
�� + 1�ps + 2�p0

�� − 1�ps + 2�p0

�ps + �p0

�� − 1�ps + �p0
�22�

where Eqs. �10�, �13�, and �16� have been used.
In the limit mp→0, the motion of the plate is equivalent to that

of a free surface acted upon by the reflected fluid overpressure pr
on one side and zero overpressure on the other side. An expansion
wave propagating at speed Ue is instantaneously formed with the
overpressure pe=0 and the velocity of the fluid particles ue=up on
the right and overpressure pr and velocity ur=0 on the left. Ap-
plying mass and momentum conservation across the expansion
wave

�r�− Ue� = �e�up − Ue� �23�

− pr = �r�− Ue�2 − �e�up − Ue�2 �24�
the plate velocity is found to be

up
2 =

pr

�r
� �r

�e
− 1� =

pr

�r

2pr

�� − 1�pr + 2�p0
�25�

where the ratio �r /�e has been expressed in terms of the pressure
ratio by using the jump conditions Eq. �10�. After some algebraic
manipulation, the expression for the plate velocity can be written
as

�26�
where fR is a nondimensional factor that depends exclusively on
the incident overpressure ratio ps / p0. From Eq. �26�, the transmit-
ted impulse ratio is finally obtained

lim
�0→�

Ip

Ii
=

mpup

psti
=

mpCRfR

�sUsti
�27�

This equation clearly reveals that ts
*=mp /�sUs is the time scale of

the interaction of the shock wave with the plate and that the in-
teraction process is characterized by the nondimensional param-
eter �s= ti / ts

*. In terms of this parameter, Eq. �27� becomes

lim
�0→�

Ip

Ii
=

CRfR

�s
�28�

It is evident that this expression degenerates to Eq. �20� for weak
sonic disturbances as limps→0CR=2 and limps→0fR=1. In the case
of air, fR remains close to one, reaches a maximum of 1.26 for
ps / p0	3.5, and tends to �9/7 as ps / p0→�.

4 Intermediate Plate Weights and Numerical Verifica-
tion

It is useful for the purpose of practical application to devise an
expression for the maximum momentum transmission coefficient
for arbitrary plate weights and shock intensities. As discussed in
Ref. �11�, the resulting expression should reduce to:

• The acoustic result Eq. �8� for very small overpressures;
• The heavy plate response Eq. �18� for small �s and arbitrary

shock intensities; and
• The light plate limit Eq. �28� for large �s and arbitrary shock

intensities.

A possible expression satisfying these requirements is

Ip

CRIi
=

1 − e−�s/fR

�s/fR
�29�

This formula represents the ratio of momentum acquired by the
plate for an arbitrary plate weight and shock intensity and the
impulse that would otherwise be transmitted to the plate should
fluid–structure interaction effects be ignored. It is interesting that
in the case of a uniform incident shock considered in this paper,
the resulting expression Eq. �29� collapses into a single curve as a
function of the parameter �s / fR. The main difference between Eq.
�29� and the result presented in Ref. �11� is that the expression
proposed here is exact in the heavy plate limit.

A numerical method has been used for the purposes of verifying
the various results of the analysis presented in the foregoing as
well as the accuracy of the empirical formula Eq. �29� in the
intermediate range of plate masses where exact solutions are not
available. The numerical method employed as well as the simula-
tions were reported elsewhere �15�. These consisted of generating
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uniform shocks of varying intensity by applying a piston velocity
at one end of the computational grid, followed by a computation
of the propagation of the shock and its reflection on plates of
varying mass modeled as a concentrated mass at the opposite
extreme of the domain. The transmitted impulse Ip was extracted
from the simulations and compared with the predictions of Eq.
�29�.

The numerical results as well as the comparisons with the
theory are shown in Fig. 2 where a plot is given of the normalized
transmitted impulse Ip /CRIi versus the combination of parameters
�s / fR. As it can be seen in this figure, an excellent agreement is
found between the numerical results and the theory. Specifically,
for �s→0 the curve becomes horizontal supporting the correct-
ness of the assumption that heavy plates behave as fixed walls and
therefore absorb the same impulse independently of the plate
mass. For �s→� the curve has slope −1 which is consistent with
the assumption that all plates acquire the same maximum velocity
�specifically Ip / Ii	mp while �s	1/mp, so that Ip / Ii	1/�s�. In
addition and most importantly, the numerical results support the
predictions of the proposed formula Eq. �29� in the intermediate
range.

5 Conclusions
Earlier work on the influence of compressibility on fluid–

structure interaction effects in the case of exponential blast-wave
profiles impinging on free-standing plates of varying mass has
been extended to the case of uniform shocks. In this simplified
problem, the asymptotic limits of very heavy and very light can be
derived exactly for arbitrary shock intensities. The linearized
problem for uniform shock profiles is also solved exactly.

It is found that the relative impulse transmitted to the plate can
be described by a single nondimensional parameter which is an
extension of Taylor’s acoustic FSI parameter to the compressible
range and incorporates the shock intensity. An explicit approxi-
mate expression for this dependence is proposed. In the interme-
diate range of plate masses the proposed general formula is veri-
fied numerically.

Similarly to what has been found before, the use of lighter
plates has the benefit of reducing the transmitted impulse, which
potentially can be exploited in structural designs with improved
blast resistance, e.g., sandwich plates with light front sheets.

Acknowledgment
This research was supported by the U.S. Army through the

Institute for Soldier Nanotechnologies, under Contract No.
DAAD-19-02-D-0002 with the U.S. Army Research Office. The
content does not necessarily reflect the position of the Govern-
ment, and no official endorsement should be inferred.

References
�1� Taylor, G. I., 1963, “The Pressure and Impulse of Submarine Explosion Waves

on Plates,” The Scientific Papers of Sir Geoffrey Ingram Taylor, Vol. III: Aero-
dynamics and the Mechanics of Projectiles and Explosions, G. Batchelor, ed.,
Cambridge University Press, Cambridge, UK, pp. 287–303.

�2� Xue, Z., and Hutchinson, J. W., 2003, “Preliminary Assessment of Sandwich
Plates Subject to Blast Loads,” Int. J. Mech. Sci., 45�4�, pp. 687–705.

�3� Fleck, N., and Deshpande, V., 2004, “The Resistance of Clamped Sandwich
Beams to Shock Loading,” Trans. ASME, J. Appl. Mech., 71�3�, pp. 386–401.

�4� Xue, Z., and Hutchinson, J. W., 2004, “A Comparative Study of Impulse-
Resistant Metal Sandwich Plates,” Int. J. Impact Eng., 30�10�, pp. 1283–1305.

�5� Qiu, X., Deshpande, V., and Fleck, N., 2004, “Dynamic Response of a
Clamped Circular Sandwich Plate Subject to Shock Loading,” J. Appl. Mech.,
71�5�, pp. 637–645.

�6� Qiu, X., Deshpande, V., and Fleck, N., 2005, “Impulsive Loading of Clamped
Monolithic and Sandwich Beams Over a Central Patch,” J. Mech. Phys. Solids,
53�5�, pp. 1015–1046.

�7� Hutchinson, J. W., and Xue, Z., 2005, “Metal Sandwich Plates Optimized for
Pressure Impulses,” Int. J. Mech. Sci., 47�4-5�, pp. 545–569.

�8� Deshpande, V., and Fleck, N., 2005, “One-Dimensional Response of Sandwich
Plates to Underwater Shock Loading,” J. Mech. Phys. Solids, 53�11�, pp.
2347–2383.

�9� Rabczuk, T., Kim, J. Y., Samaniego, E., and Belytschko, B. T, 2004, “Homog-
enization of Sandwich Structures,” Int. J. Numer. Methods Eng., 61�7�, pp.
1009–l027.

�10� Liang, Y., Spuskanyuk, A. V., Flores, S. E., Hayhurst, D. R., Hutchinson, J. W.,
McMeeking, R. M., and Evans, A. G., 2007, “The Response of Metallic Sand-
wich Panels to Water Blast,” J. Appl. Mech., 74�1�, pp. 81–99.

�11� Kambouchev, N., Noels, L., and Radovitzky, R., 2006, “Compressibility Ef-
fects in Fluid–Structure Interaction and their Implications on the Air-Blast
Loading of Structures,” J. Appl. Phys., 100, p. 063519.

�12� Taylor, G. I., 1950, “The Formation of a Blast Wave by a Very Intense Explo-
sion, II The Atomic Explosion of 1945,” Proc. R. Soc. London, Ser. A,
201�1065�, pp. 175–186.

�13� Anderson, J., 2001, Fundamentals of Aerodynamics, McGraw–Hill, New York.
�14� Tan, P. J., Reid, S. R., and Harrigan, J. J., 2005, “Discussion: The Resistance of

Clamped Sandwich Beams to Shock Loading �Fleck, N. A., and Deshpande, V.
S., 2004, ASME. J. Appl. Mech., 71, pp. 386–401�,” Trans. ASME, J. Appl.
Mech., 72, pp. 978–979.

�15� Kambouchev, N., Noels, L., and Radovitzky, R., 2007, “Numerical Simulation
of the Fluid–Structure Interaction Between Air Blast Waves and Free-Standing
Plates,” Comput. Struct., in press.

Fig. 2 Impulse transmission as function of the compressible
parameter �s for different values of the incident overpressure
ps /p0

Journal of Applied Mechanics SEPTEMBER 2007, Vol. 74 / 1045

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Integral Representation of Energy
Release Rate in Graded Materials

Z.-H. Jin1

C. T. Sun
e-mail: sun@purdue.edu

School of Aeronautics and Astronautics,
Purdue University,
West Lafayette, IN 47907

It is well known that, for homogeneous materials, the path-
independent J contour integral is the (potential) energy release
rate. For general nonhomogeneous, or graded materials, such a
contour integral as the energy release rate does not exist. This
work presents a rigorous derivation of the extended J integral for
general graded materials from the potential energy variation with
crack extension. Effects of crack shielding and amplification due
to a graded interlayer in an elastic-plastic material system are
discussed in terms of this integral. �DOI: 10.1115/1.2712236�

1 Introduction
For a homogeneous elastic material, Rice �1� introduced the

path-independent J contour integral and derived it as the �poten-
tial� energy release rate G defined by

G = −
d�

da
�1�

where � is the potential energy of the system and a is the crack
length. The J integral remains path independent even for nonho-
mogeneous materials with properties graded in the direction per-
pendicular to crack extension. For general graded materials, how-
ever, the standard J integral loses its path independence and
generally it does not represent the energy release rate. Eischen �2�
introduced a modification to the J integral by adding an area in-
tegral term involving the explicit derivative of the strain energy
density with respect to x, the coordinate along the crack direction.
The modified integral �called J1

* in Ref. �2�� reduces to the stan-
dard J integral when the integration contour shrinks to the crack
tip and hence represents the energy release rate from a local field
argument. Eischen �2� claimed that the J1

* integral also represents
the global strain energy release rate but did not offer the proof.
For a less general nonhomogeneous material that possesses a con-
stant Poisson’s ratio and an exponentially graded shear modulus
along the crack direction, Honein and Herrmann �3� introduced a
path-independent Je integral. In applying Je integral to a split
beam problem, the authors mistakenly claimed that this integral
was not the energy release rate due.

The present study presents a mathematically rigorous derivation
of the J integral as the energy release rate for general graded
materials with continuous and piecewise differentiable properties.
The implication of crack-tip stress singularity on the derivation is
considered following the treatment for homogeneous materials by
Jin and Sun �4�. It is shown that both the J1

* integral �2� for general
nonhomogeneous materials and the Je integral �3� for a particular
nonhomogeneous material can be derived as the energy release

rate from a global field argument. Effects of crack-tip shielding
and amplification due to a graded interlayer in an elastic-plastic
material system are discussed using the modified J integral.

2 Potential Energy Variation and the J Integral in
Graded Materials

Consider a two-dimensional nonhomogeneous body with a
crack of length a as shown in Fig. 1. The area of the body is
denoted by A0 and the boundary is �0 which consists of the outer
boundary � and the crack faces �c, i.e.,

�0 = � � �c, �c = �c
+ � �a � �c

− �2�

The material is subjected to the prescribed tractions Ti on the
boundary segment �t and the prescribed displacements on the
boundary segment �u.

In the absence of body forces, the potential energy, �, of the
cracked body per unit thickness is a function of crack length a and
can be expressed as

� = ��a� =� �
A0

WdXdY −�
�t

Tiuid� �3�

where �X ,Y� is a stationary Cartesian coordinate system, ui are the
displacements corresponding to Ti on �t, and W is the strain en-
ergy density given by

W = W��ij,X,Y� =�
0

�ij

�ijd�ij �4�

Note that W explicitly depends on �X ,Y� for graded materials. For
an isotropic nonhomogeneous and linearly elastic material, for
example, W is

W = ��X,Y���ij�ij +
��X,Y�

1 − 2��X,Y�
��kk�2� �5�

where ��X ,Y� and ��X ,Y� are the shear modulus and Poisson’s
ratio, respectively. The energy release rate associated with a quasi-
static crack extension is defined by

G = −
d�

da
= −

d

da � �
A0

WdXdY +
d

da�
�t

Tiuid� �6�

Introduce a local coordinate system �x ,y� attached to the crack tip,
i.e.,

x = X − a, y = Y �7�

Thus,

d

da
=

�

�a
−

�

�x
�8�

when the field variables are described in the local coordinate sys-
tem �x ,y�.

Because �W /�x has a 1/r2 singularity at the crack tip �r is the
distance from the tip� in linear elastic fracture mechanics since
W�1/r, as r→0 �this is true for graded materials, see Refs.
�2,5��, the differentiation with respect to crack length may not be
directly performed within the area integral sign in Eq. �6�. To
properly treat the stress singularity in performing the differentia-
tion, Jin and Sun �4� considered a small square Ah with the center
at the crack tip and the boundary denoted by �h, as shown in Fig.
1. Equation �6� now can be written as

1Currently at Department of Mechanical Engineering, University of Maine,
Orono, ME 04469.
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G = −
d

da�� �
A

WdXdY +� �
Ah

WdXdY� +�
�t

Ti
dui

da
d�

= −� �
A

dW

da
dXdY +�

�0

Ti
dui

da
d� −

d

da � �
Ah

WdXdY �9�

where A is the region excluding Ah and contains no stress singu-
larities, and the integration along �t is extended to the entire
boundary �0 because Ti=0 on the crack faces �c and dui /da=0
on �u. The positive contour direction of �0 is when one travels
along it, the domain of the interest always lies to the left of the
traveler. Using relationship �8�, Eq. �9� can be written as

G = −� �
A

�W

�a
dxdy +� �

A

�W

�x
dxdy +�

�0

Ti
�ui

�a
d�

−�
�0

Ti
�ui

�x
d� −

d

da � �
Ah

WdXdY �10�

For graded materials, using the divergence theorem and the
condition that Ti=0 on the crack faces �c, we have

� �
A

�W

�a
dxdy =�

�+�h

Ti
�ui

�a
d� + 	 � �

A

�W

�x 	
exp l

dxdy

�11�

where 
��W /�x�
exp l denotes the explicit derivative of W with
respect to x, i.e.,

	 �W

�x
	

exp l

= 	 �W��ij,x,y�

�x
	

y=const,�ij=const

�12�

It is also clear that

� �
A

�W

�x
dxdy =�

�+�c
++�h+�c

−
Wdy =�

�

Wdy +�
�h

Wdy

�13�

Substitution of Eqs. �11� and �13� into Eq. �10� leads to

G =�
�

Wdy −�
�

Ti
�ui

dx
d� −� �

A

	 �W

�x
	

exp l

dxdy +�
�h

Wdy

−�
�h

Ti
�ui

�a
d� −

d

da � �
Ah

WdXdY �14�

It follows from the crack-tip fields for nonhomogeneous materials

�5� that the strain energy density function has the following uni-
versal form in the region near the moving crack tip:

W = B�a�W̃�X − a,Y,M� = B�a�W̃�x,y,M� �15�

where B�a� may depend on loading and other factors but not on

the local coordinates, W̃ is a function of local coordinates, and
M =M�a� stands for material properties, for example, the power
exponent for nonlinear power-law materials. When Ah is so small
that Eq. �15� holds in a region containing Ah, it can be proved
following Ref. �4� that the last three terms on the right-hand side
of Eq. �14� reduce to −
��Ah

��W /�x�
exp l dxdy. We thus obtain the
expression of energy release rate for graded materials

G = Jgm =�
�

�Wdy − Ti
�ui

�x
d�� − 	 � �

A0

�W

�x 	
exp l

dxdy

�16�
The energy release rate in Eq. �16� is the path/domain-
independent J* integral �J1

*� introduced in Ref. �2�.
Consider a special elastic material with the following shear

modulus � and Poisson’s ratio �

� = �0 exp��X�, � = �0 �17�
It follows from Eqs. �5�, �12�, and �17� that

	 �W

�x
	

exp l

= �W �18�

Consequently, the energy release rate G in Eq. �16� becomes

G = Jgm =�
�

�Wdy − Ti
�ui

�x
d� −

�

2
Tiuid�� �19�

This is the path-independent Je integral in Ref. �3�.

3 Crack Shielding and Amplification due to a Graded
Interlayer

It has been known that using a graded layer to join dissimilar
homogeneous materials could result in some advantages over the
conventional sharp interface, such as reduced residual stresses and
enhanced bonding strengths. Using a finite element method, Kim
et al. �6� studied the effects of an elastic-plastic graded interlayer
on the crack-tip driving force quantified by the J integral under
small scale yielding conditions. Their finite element results show
that the J integral evaluated along a contour close to the crack tip
�which approaches the interface from a homogeneous substrate�
may be higher �crack amplification� or lower �crack shielding�
than the applied J integral depending on the relative yield strength
of the two substrates. In this section, we provide a theoretical
basis for crack shielding and amplification using the integral in
Eq. �16�.

Consider two dissimilar homogeneous materials joined with a
graded interlayer as shown in Fig. 2. The material properties are
assumed to vary continuously throughout the body but may expe-
rience jumps in their gradients at the interfaces between the
graded layer and the homogeneous bulks. The energy release rate
of quasi-static crack extension in this material system can be ob-
tained directly from Eq. �16� as

G = Jgm =�
�

�Wdy − Ti
�ui

�x
d�� − 	 � �

Ai

�W

�x 	
exp l

dxdy

�20�

where Ai is the area of the graded region. Equation �20� holds for
any crack tip locations, i.e., crack in the homogeneous substrates,
crack tip in the graded layer, and crack terminating at the
interfaces.

Fig. 1 The cracked body and coordinate systems
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Assume that the material system is elastically homogeneous
and the plastic flow properties are graded only in the interlayer.
The deformation plasticity, or nonlinear elasticity, can be applied
to stationary cracks. Under small scale yielding conditions, a
K-field thus exists far away from the crack tip, but plastic defor-
mations may develop near the crack tip and in the graded layer.

Consider an integration contour � in the K-dominance zone.
According to Eq. �20�, the energy release rate can be evaluated as

G = Japp − 	 � �
Ap

�W

�x 	
exp l

dxdy �21�

where Ap is part of the interlayer undergoing plastic deformations
within the contour � as shown in Fig. 3 and Japp is the usual J
integral given by

Japp =�
�

�Wdy − Ti
�ui

�x
d�� =

1 − �2

E
KI

2 �22�

Note that G is not equal to Japp due to the graded plastic flow
properties in the nonhomogeneous interlayer.

Now consider another integration contour �tip within the
cracked substrate as shown in Fig. 3. Because the material is
homogeneous within �tip, the energy release rate is equal to the
usual J integral along �tip

G = Jtip �23�
It follows from Eqs. �21� and �23� that

Jtip = Japp − 	 � �
Ap

�W

�x 	
exp l

dxdy �24�

Equation �24� can be rewritten in the form

Jtip

Japp
= 1 −

E�

�1 − �2�KI
2 �25�

where the shielding/amplification factor � is

� = 	 � �
Ap

�W

�x 	
exp l

dxdy �26�

Equation �25� indicates that crack shielding/amplification is
caused by the gradation of plastic flow properties in the graded
interlayer. The crack tip is shielded �Jtip	Japp� when �
0, while
the opposite is true if �	0. For a power-law-graded material
described by

� =
�

E
, � 	 �Y�x,y�

� =
�Y�x,y�

E
� �

�Y�x,y�
n�x,y�

, � � �Y�x,y� �27�

the factor � is

� =� �
Ap

� �W

��Y

��Y

�x
+

�W

�n

�n

�x
dxdy �28�
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Fig. 2 A graded layer between two dissimilar homogeneous
substrates

Fig. 3 Contours around the crack tip
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1 Introduction
Fracture of composites often takes place near or at interfaces

between dissimilar material layers. Pre-existing microcracks at an
interface strongly affect the initiation and propagation of macroc-
racks. Accordingly, much research has been carried out on the
interface crack problem, e.g., see review in Ref. �1�.

A particular cracking configuration in composites involves
cracks meeting bimaterial interfaces. Zak and Williams �2� first
analyzed this type of problems with an eigenfunction expansion
method, which was followed by further studies �e.g., Refs. �3–7��.
These investigations revealed that stress singularity still exists
when a crack touches a bimaterial interface of elastic materials,
except in a special case of bending �4�. The singularity factor was
found to depend on some dimensionless constants �3,4� or the
Dundurs bimaterial parameters �5–7�. The well-known square-root
singularity will be recovered if the interface is formed by identical
materials.

In real materials infinite stresses do not actually occur since
mechanisms such as finite plasticity will release the stresses. To
address this issue, Dugdale �8� and Barenblatt �9� proposed that a
cohesive zone �fracture process zone� exists ahead of a crack tip
and it limits the stresses to physically meaningful magnitudes. In
this zone, crack surfaces are partially developed and some traction
is sustained between the partly developed crack surfaces, which
are commonly referred to as the cohesive surfaces.

Extensions of the cohesive zone concept to situations in com-
posites involving cracks meeting bimaterial interfaces have been
very limited in the literature. A notable study by Romeo and Bal-
larini �10� considered cracks perpendicular to and terminating at a
bimaterial interface. By incorporating a cohesive zone, the authors
were able to circumvent an unfavorable prediction in linear elastic
fracture mechanics �LEFM� that a crack at either zero or infinite
applied load might penetrate an interface from a relatively stiffer
material to a more compliant one, or vice versa.

The purpose of the current technical brief is to provide an un-
derstanding of near-tip fields around a crack meeting a bimaterial
interface when a cohesive zone is present ahead of the crack tip.
To simplify the mathematics, a Mode III problem is considered in
which a crack is normal to a bimaterial interface between two
isotropic linear elastic materials, as described in detail in Sec. 2. It

is worth noting that the problem of an interfacial crack with a
cohesive zone ahead of the crack tip has been treated recently by
the authors �11�.

2 Linear Elastic Fields
We consider a semi-infinite crack that is perpendicular to a

bimaterial interface and with a cohesive zone ahead of the crack
tip �see Fig. 1�. To make the problem mathematically tractable and
to obtain close-form solutions, we suppose that half of the cohe-
sive zone connects the crack tip to the bond line. As illustrated in
Fig. 1, the entire problem plane is divided into three regions:
Regions 1 and 3 are occupied by Material 1, and Region 2 is
occupied by Material 2.

2.1 General Solutions. To effectively account for the cohe-
sive surface boundaries, we take advantage of elliptic cylindrical
coordinates u, �, w, which are related to the Cartesian coordinates
x, y, z in the plane of oxy by

� = c cosh��� �1�

where c is a parameter and is chosen to be one half of the cohesive
zone size, and

� = x + iy, � = u + i� �2�

are complex variables in the Cartesian and elliptic coordinate sys-
tems, respectively.

Figure 2 shows the locations of various quantities of the crack
and the cohesive zone in the elliptic coordinate system. The two
lines, �=� and �=−�, represent the crack surfaces. The origin of
the Cartesian coordinates is located at u=0 and �= ±� /2, the
crack tip is placed at x=−c and y=0 �where u=0, �= ±��, and the
two line segments with length 2c �u=0, −������ stand for the
cohesive surfaces. The bimaterial interface is represented by x
=0 ��= ±� /2�.

For a Mode III crack, the displacement and stresses can be
expressed as the real and imaginary parts of analytic functions
�12�

uz
j = Im�Xj����/� j, �zx

j = Im�Xj�����, �zy
j = Re�Xj����� �3�

where j refers to the region number �j=1,2 ,3�; � j is the shear
modulus; and Xj���� is the differentiation of Xj��� and is chosen as

Xj������� = ��2 − 1��bj + iaj�� je
�� �4�

with �, aj, and bj being real parameters �as seen later, � is the
eigenvalue of a characteristic equation�. Integration of Eq. �4�
with respect to � yields

Xj������ =
c

2
�bj + iaj�� j��� − 1�e��+1�� − �� + 1�e��−1��� �5�

Substituting Eqs. �4� and �5� into Eq. �3�, we obtain the shear
stresses and the out-of-plane displacement associated with Mode
III in terms of elliptic coordinates

�zx
j = ��2 − 1�� je

�u�bj sin���� + aj cos����� �6�

�zy
j = ��2 − 1�� je

�u�bj cos���� − aj sin����� �7�

uz
j =

c

2
e��+1�u��� − 1��bj sin��� + 1��� + aj cos��� + 1���� − �� + 1�

	�bj sin��� − 1��� + aj cos��� − 1����e−2u� �8�
To focus on the near-tip asymptotic behavior, and without

specifying the details of a cohesive law, a solution possessing the
following features is sought: �a� there are no tractions on the crack
surfaces �however there are tractions on the cohesive surfaces�;
�b� stresses are finite everywhere; �c� tractions are continuous
across the cohesive zone; �d� there is a finite displacement jump
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across the cohesive zone; and �e� stresses tend to zero far away
from the near-tip region. Some of these considerations have been
made when Eq. �4� is chosen.

2.2 Boundary Value Problem. We assume that the same � in
Eqs. �6�–�8� applies to all three regions of the problem domain.
Then the continuity at the interface is independent of the coordi-
nate u. The boundary conditions on the crack surfaces ��= ±��
and the continuity conditions across the interface ��= ±� /2� are

�zy
1 �u,�� = �zy

3 �u,− �� = 0 �9�

�zx
1 �u,�/2� = �zx

2 �u,�/2�, �zx
3 �u,− �/2� = �zx

2 �u,− �/2� �10�

uz
1�u,�/2� = uz

2�u,�/2�, uz
3�u,− �/2� = uz

2�u,− �/2� �11�

For brevity, and noting �3=�1, let

c1 = a1�1, c2 = b1�1, c3 = a2�2,

c4 = b2�2, c5 = a3�1, c6 = b3�1 �12�
Substituting Eqs. �6�–�8� and �12� into Eqs. �9�–�11�, we obtain
the characteristic equation

sin�������1 + �2�cos���� + �1 − �2� = 0 �13�
which is a special form of the one obtained by Fenner �4�. The
roots of Eq. �13� give the complete set of eigenvalues

� = 2n ± 
, � = n �14�

where n is an integer and 
 is determined by a bimaterial param-
eter k


 =
1

�
arcos� k − 1

k + 1
�, k = �2/�1 �15�

If stress concentration is taken to occur only in the crack tip re-
gion �which is a natural and reasonable assumption because the
crack tip region is where the only geometric discontinuity occurs

in the current asymptotic analysis�, then only negative values of �
are admissible. Noting that 0�
�1 for 0�k�� in Eq. �15�,
this means that the integer n can only have negative values for the
second term in Eq. �14� and only zero �which must be accompa-
nied by the choice if the “−” sign in front of 
� and negative
values for the first term in Eq. �14�. As such, the leading eigen-
function term is associated with the leading eigenvalue �=−
.

For illustration purpose, the leading solution term correspond-
ing to �=−
 will be obtained explicitly and will be used to view
the near-tip field variation. For this eigenvalue, we solve Eqs.
�9�–�11� for c1, c3, c4, c5, and c6 in terms of c2 �which, for brevity,
is replaced by −p�

c1 = p/tan�
��, c2 = − p, c3 = 0 �16�

c4 = − p�k + 1�/2, c5 = − p/tan�
��, c6 = − p �17�

2.3 Leading-Term Field Solutions. Using the parameters
and the leading eigenfunction term associated with �=−
, stress
and displacement field solutions in the three regions can be de-
rived from Eqs. �6�–�8�

�zx
1 = − me−
u cos�
�� − ��� �18�

�zy
1 = me−
u sin�
�� − ��� �19�

uz
1 =

kume�1−
�u

2�k + 1�
�e−2u�
 − 1�cos�
� − �
 + 1��� − �
 + 1�cos�
�

− �
 − 1���� �20�
in Region 1 �containing Material 1�

�zx
2 = −

k + 1

2
me−
u sin�
��sin�
�� �21�

�zy
2 =

k + 1

2
me−
u sin�
��cos�
�� �22�

uz
2 =

ume�1−
�u

4
sin�
���e−2u�
 − 1�sin��
 + 1��� − �
 + 1�sin��


− 1���� �23�
in Region 2 �containing Material 2�, and

�zx
3 = me−
u cos�
�� + ��� �24�

�zy
3 = me−
u sin�
�� + ��� �25�

uz
3 =

kume�1−
�u

2�k + 1�
��
 + 1�cos�
� + �
 − 1��� − e−2u�
 − 1�cos�
�

+ �
 + 1���� �26�
in Region 3 �containing Material 1�, where

m =
�1 − 
2�p
sin�
��

, um =
�k + 1�pc

�1k sin�
��
�27�

To illustrate the field solutions, the normalized quantities,
�zx /m, �zy /m and uz /um corresponding to the bimaterial param-
eter k=2, are plotted against the normalized Cartesian coordinates
�x /c=cosh�u�cos���, y /c=sinh�u�sin���� in Fig. 3. Figures 3�a�
and 3�b� clearly show that both shear stresses have finite magni-
tudes, and that �zx is continuous but �zy is discontinuous across
the interface �x=0�. Figure 3�c� reveals that the out-of-plane dis-
placement varies smoothly from the cracked region �x�−c� to the
uncracked region �x�c� through the cohesive zone �−c�x�c�.
This differs from the LEFM that predicts abrupt change of dis-
placement field at the crack tip. Thus finite strain is sustained
everywhere in the current solution but infinite strain arises at the
crack tip in LEFM.

Fig. 1 A cracked bimaterial plate with a crack perpendicular to
the bimaterial interface and with a crack-tip cohesive zone
passing through the interface

Fig. 2 Locations of the crack and cohesive zone quantities in
terms of elliptic coordinate u „solid line… and � „dashed line…
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3 Discussion
In the example of k=2 shown in Fig. 3, Material 2 is stiffer,

thus �zy is larger near the bond line in Material 2 �x�0� than in
Material 1 �x�0�. Figure 4 shows the profiles of normalized �zy

along the crack path �y=0±� and the interface �x=0±� for k=1/2,
where the maximum �zy happens inside the cohesive zone at the
interface in Material 1 instead of at the tip of the cohesive zone in
Material 2, since Material 1 is stiffer in this case.

The above comparison is based on the leading eigenfunction
term �with �=−
�. A general solution would be a combination of
Eqs. �18�–�26� and some higher-order terms with other eigenval-
ues �Eq. �14��. As an analogy, we can view the eigenfunctions
�Eqs. �6�–�8�� as expansion terms of a “Fourier” series and inter-
pret the eigenvalues in Eq. �14� as “frequencies” in the spectrum
space. The selected eigenvalue �=−
 has the lowest admissible
“frequency” and hence should be the leading term so that stress
concentration occurs in the crack tip region. In a homogeneous
material, the leading term corresponding to �=−1/2 has been
shown to be a good asymptote of the classical LEFM solution
�13�. The leading term for �=−
 can also be compared with the
first-order LEFM solution in a similar way. It is emphasized
that other eigenvalues may also be needed for a more accurate
analysis.

A few notes are necessary for the current approach. First, we
have assumed that the cohesive zone is divided equally into two
halves �Fig. 2�. This is an idealized simplification when a Mode
III crack is penetrating the interface. Second, the traction continu-
ity conditions across the cohesive zone interface are not used ex-
plicitly in the derivations but they have been taken into consider-
ation when choosing the basic function �Eq. �4�� which leads to
eigenfunctions that satisfy the boundary conditions. Third, bound-
ary conditions along the cohesive surfaces are not prescribed,
which implies that a cohesive zone model is not predefined.
Fourth, to accommodate a particular cohesive zone model, it is
expected that stress and displacement field terms associated with

multiple eigenvalues may be needed in order to properly charac-
terize the traction and separation variations along the cohesive
surfaces.

To illustrate the last point conveniently, let Material 1 and Ma-
terial 2 be identical �so that 
=1/2 in Eq. �14��. The correspond-
ing cohesive stress �along u=0�, when all admissible eigenterms
are considered, can be written as

�zy��� = �
n

n cos��n − 1/2���, n = 0,− 1,− 2, . . . �28�

where antisymmetric conditions have been accounted for �there-
fore only the first set of eigenvalues in Eq. �14� is activated�.

Equation �28� is actually a special form of Fourier series �14�,
where all terms with sine functions are zero. Thus for a specific
cohesive law, an asymptotic solution can be obtained by selecting
a sufficient number of eigenterms. Since the cosine functions form
an orthogonal system, the coefficients in Eq. �28� can be readily
derived by

n =
2

�
�

0

�

�zy���cos��n − 1/2���d� �29�

As an example, let us consider the Dugdale cohesive model
�zy =�0 �i.e., traction is constant in the cohesive zone�, and the
maximum separation �uz=�0 occurs at the crack tip. Here, �0 and
�0 are material constants. Once all coefficients n are determined
using Eq. �29�, the half cohesive zone size, c, can be computed by
summing the eigenterms for the displacement and equating the
crack opening displacement at the crack tip to �0. Figure 5 shows

Fig. 3 Contour plots of normalized shear stresses and out-of-plane displacement near the
crack tip for k=2: „a… �zx /�m; „b… �zy /�m; and „c… uz /um

Fig. 4 Spatial distributions of normalized shear stresses for
k=1/2: „a… �zy /�m along y=0±; and „b… �zy /�m along x=0±

Fig. 5 Approximation of cohesive stress distribution of the
Dugdale model �zy /�0=1 for identical materials „k=1…
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the approximation of the Dugdale model when totally 1 �n=0�, 10
�n=−9,−8, . . . ,0�, and 100 �n=−99,−98, . . . ,0� eigenterms are
used in Eq. �28�. It clearly demonstrates that the given �zy =�0 in
the cohesive zone �−1�x /c�1, y=0� can be approached to a
certain cutoff error by using an adequate number of eigenfunction
terms.

It is worth noting that in the above analysis the enforcement of
a cohesive law ahead of the crack tip implies that the cohesive
zone is fully developed, the crack is fully open, and crack growth
is impending �that is, the stress field around the crack tip is in a
steady state, as in quasi-static crack growth, and thus is indepen-
dent of the external load�. In particular, this implies that the coef-
ficients of the stress and displacement eigenterms and the half
cohesive zone size, c, depend only on the material constants �0
and �0 but do not depend on the external load. On the other hand,
if the cohesive zone is considered not fully developed, then an
interpretation of the above analysis is that the crack opening �0 at
the crack tip is not critical, thus it �and hence the cohesive zone
size� is controlled by and depends on the external load.

4 Summary
This Technical Brief provides an understanding of the near-tip

elastic fields around a Mode III crack with a cohesive zone. The
crack is perpendicular to a bimaterial interface and the crack-tip
cohesive zone penetrates the interface, with the midpoint of the
cohesive zone being situated right at the interface. Stress and dis-
placement field variations based on the leading eigenfunction term
have been presented. The stresses do not have any singularity and
the displacement field has a finite jump across the cohesive zone.
The results of this study can serve as a basis for further investi-
gations relevant to the analyses of fracture of materials near inter-
faces when the effects of crack-tip cohesive zones are considered.
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The lateral motion of a tape moving axially over a cylindrical
guide surface is investigated. The effects of lateral bending stiff-
ness and friction force are studied and the attenuation of lateral
tape motion as a function of the guide radius and friction coeffi-
cient is determined. Good agreement between numerical predic-
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1 Introduction
Lateral tape motion �LTM� is the time-dependent displacement

of magnetic tape perpendicular to the tape transport direction.
Lateral tape motion causes track misregistration between the read/
write head and a previously written track, thereby limiting the
track density that can be achieved �1�. In order to increase the
track density further, the lateral displacement of tape must be
decreased �2�.

Several researchers have studied the dynamic behavior and vi-
brations of a moving web between rollers �3–11�. The effect of
guides on the lateral tape motion in a tape path has been studied
by only a few researchers. Ono �12� described the lateral displace-
ment of an axially moving string on a cylindrical guide surface.
Bending stiffness was not included in his model. He showed that
the lateral motion was governed by a second order differential
equation similar to that for one-dimensional heat flow. More re-
cently, O’Reilly and Varadi �13� studied the dynamics of a closed
loop of inextensible string which is undergoing an axial motion
and of which one point is in contact with a singular supply of
momentum. Taylor and Talke �14� investigated the interactions
between rollers and flexible tape and showed that friction between
the tape and the roller affects the lateral displacement of tape.

In this paper we have studied the lateral motion of magnetic
tape as it moves over a stationary guide. We have included the
effect of bending stiffness, since the area moment of the tape for
the transverse direction is very large.

2 Theoretical Study

2.1 Lateral Tape Motion Including Bending Stiffness. In
Figs. 1�a� and 1�b�, a section of tape is shown as it moves over a

cylindrical guide surface. Vector M denotes the position of a point
on the centerline of the tape between boundary points s1 and s2 in
a fixed cylindrical coordinate system r�z with unit vectors
er ,e� ,k.

To model the system, we make the following simplifying as-
sumptions:

1� The magnitude of the friction force is proportional to the
normal force, F=�N.

2� The lateral tape motion is sufficiently small so that only the
first-order terms of the lateral displacement and the deriva-
tives with respect to space or time must be retained.

3� Deformation of the tape is assumed small in the lateral di-
rection �� small�. Bernoulli-Euler assumptions are em-
ployed.

4� The tape moves at a constant speed v0. Hence, �v0 /�s=0.

The forces acting on a small element ds of tape are the tension
force T, the normal force N, the friction force F, and the shear
force V. Expressing dT, N, and F in r, �, z coordinates, we obtain

dT�s� = �− Ta� ��

�s
�2

ds�er + �� �T

�s
a

��

�s
+ Ta

�2�

�s2 �ds�e�

+ �� �T

�s

�z

�s
+ T

�2z

�s2�ds�k �1�

N = Ner �2�

and

F = −
Na

v0

��� ��

�t
+ v0

��

�s
�e� −

N

v0

�z� �z

�t
+ v0

�z

�s
�k �3�

where s is the spatial coordinate along the tape centerline, a is the
radius of the cylindrical guide, and �� and �z are the friction
coefficient in the circumferential direction and the z direction,
respectively. T is the magnitude of the tape tension vector and t
represents the time. In addition, dV can be shown to be �Appen-
dix�

dV�s� = �2EI
�5z

�s5ds�e� − �EI
��

�s

�4z

�s4ds�er − �EI
��

�s
a

�3z

�s3� �z

�s

+
��

�s
�ds�k �4�

Using equilibrium of forces, we have

�wds
d2M

dt2 = dT + Fds + Nds + dV �5�

where � is the tape density and w is the tape width.
Introducing �1�–�4� in �5�, one can obtain equations for the er,

e�, and k directions. We assume that v0 is constant. In addition,
we assume that the local stress change in the tape can be neglected
and that the LTM is small. Hence, we can write that

��

�t
=

�2�

�t2 = 0

�2�a��
�s2 = − sin �

��

ds
� 1

�z

�s
= sin � � 1

��a��
�s

= cos � 	 1

For a typical tape transport speed v0=4 m/s and tension T=1 N,
we can neglect the inertia terms �wv0

2 versus the tension T for a
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9 �m thick magnetic tape �mylar-PET� with �=0.012 kg/m2 and
w=12.7 mm. Hence, we obtain the equation of motion of an axi-
ally moving tape on a cylindrical guide surface as

− EI
�4z

�s4 + T
�2z

�s2 −
�zT

a
�1 − ��

�z

�s
−

�zT

v0a

�z

�t
= 0 �6�

�=�� /�z is the ratio of the friction coefficients in the circumfer-
ential and vertical direction, respectively. E represents the Young’s
modulus and I is the area moment. In Eq. �6�, the fourth order
derivative represents the bending stiffness of the tape. If the bend-
ing stiffness is neglected, i.e., I=0, Eq. �6� becomes identical to
the equation of motion for a string derived by Ono �12�.

3 Numerical Solution
To solve Eq. �6�, an implicit Euler finite difference scheme was

implemented. As illustrated in Figs. 1�a� and 1�b�, the tape makes
contact with the cylindrical guide at point s1 and comes off the
cylindrical guide at point s2. We assume that the tape is wound on
a reel with zero run-out at s3, i.e., z�s3 , t�=0. At s0, the lateral
displacement f0�t� is assumed to be known from experimental
measurements, i.e., z�s0 , t�= f0�t�. In addition we postulate that the
tape moves like a rigid body between s0 and s1 and s2 and s3,
where it is not supported by the guide. The distances l1= 
s0s1
 and
l3= 
s2s3
 are taken much shorter than the distance l2= 
s1s2
.

The solution of Eq. �6� for the domain s1s2 requires four bound-
ary conditions. The slope of the tape at s=s1 must be equal to the
slope at s=s0 and the slope of the tape at s=s2 must be equal to
the slope at s=s3. Thus,

l1
�z

�s
− �z − f0�t�� = 0 at s = s1 �7�

and

l3
�z

�s
+ z = 0 at s = s2 �8�

In addition, the curvature at s1 and s2 has to be zero to insure a
smooth tape path, i.e.,

� �2z

�s2�
s1,s2

= 0 �9�

4 Experimental Validation and Discussion

4.1 Apparatus. To allow a comparison of numerical results
with experimental data, the apparatus shown in Fig. 2 was used.
The setup consists of a tape moving from a supply reel to a
take-up reel at v0=4 m/s over a cylindrical guide with a radius of
a=10 mm. The nominal tape tension T=1 N. The run-out of the
supply reel creates LTM in the tape path. A cutout was provided in
the cylinder, for the placement of a lateral tape motion edge sensor
�1� �LTM A in Fig. 2�a��, mounted on a linear microstage for
vertical positioning. Additionally, we measured the LTM as close
as possible to the point where the tape makes contact with the
guide �LTM B in Fig. 2�b�� and used this as input �boundary
condition� z�s0 , t�= f0�t� for our numerical model.

Fig. 1 Tape on a cylindrical guide

Fig. 2 Experimental apparatus to measure LTM on a cylindri-
cal guide

Fig. 3 Comparison of experimental measurements and numerical predictions in the middle of the cylindrical
guide „a… in time domain and „b… in frequency domain
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4.2 Experimental Results. To verify our model, we have
compared the values of numerically calculated lateral tape motion
in the middle of the cylindrical guide with experimentally mea-
sured LTM values at the same position. Figure 3�a� shows simu-
lated and experimentally measured values of lateral tape displace-
ment in the middle of the cylindrical guide, while Fig. 3�b� shows
the simulated and experimentally determined frequency spectrum
at the same position. In our simulation we have used the following
parameters: E=7 GPa, w=12.7 mm, �=0.012 kg/m2, v0=4 m/s,
�=0.012 kg/m2, a=10 mm, T=1 N, �=1, and tape thickness b
=9 �m. These values represent typical values for state-of-the-art
magnetic tapes �15,16�. From Fig. 3 we observe good agreement
between experimental measurements and numerical results, espe-
cially in the low frequency region. The increased deviation be-
tween experimental measurements and the numerical predictions
for increasing frequencies is most likely related to the presence of
the cutout in the stationary guide for positioning of the lateral tape
displacement sensor.

4.3 Bending Stiffness. The path of a tape with bending stiff-
ness on a cylindrical guide is different from the path followed by
a string. Figure 4 shows the maximum displacement d that the
tape trajectory deviates from a straight line, versus tape thickness,
as a function of Young’s modulus.

The results in Fig. 4�a� are for a cylindrical guide with a radius
of 100 mm, while the results in Fig. 4�b� are for a cylindrical

guide with a radius of 10 mm. We note that the vertical plotting
scale for both pictures is different. We observe that the maximum
displacement d decreases with increasing Young’s modulus and
increasing tape thickness, i.e., d decreases with increasing bend-
ing stiffness. In addition, the maximum deviation d decreases with
decreasing guide radius.

4.4 Effect of a Guide in the Tape Path. In order to investi-
gate the effect of a guide on the lateral tape displacement, we have
calculated the amplitude ratio of the lateral tape displacement at
positions s1 and s2. A sine wave with constant frequency was
applied as an input at s=s1 and the output at s=s2 was simulated.
For each frequency, the ratio of output to input amplitude was
calculated. Figure 5�a� shows the amplitude ratio for a constant
friction coefficient ��=�z=0.3 as a function of frequency and
guide radius a, while Fig. 5�b� shows the amplitude ratio for a
guide radius of 200 mm for different friction coefficients.

We observe that the amplitude ratio decreases with increasing
guide diameter and with increasing friction coefficient. By posi-
tioning guides in the tape path at specific positions, high fre-
quency LTM could be filtered out before the tape moves over the
magnetic read/write head. Lateral tape motion above 500 Hz can-
not be followed by the servo system of the magnetic read/write
head. When the amplitude of high frequency lateral tape motion is
larger than 10% of the track width, read/write errors are likely to

Fig. 4 Maximum deviation from straightness for „a… a guide with radius 100 mm and „b… a guide with radius
10 mm „s0=20 �m and s3=0 �m, ��=�z=0.3…

Fig. 5 Amplitude ratio z„s2… /z„s1… „a… for different guide radii and „b… for different friction coefficients
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occur. Thus, reducing high frequency lateral tape motion before it
reaches the head is desirable since it would allow narrower tracks,
resulting in higher track density.

The tape model with bending stiffness also has an important
application in the tape slitting process where lateral tape displace-
ment has to be minimized in order to manufacture tapes with
sufficiently “straight” edges for servo track writing. If the radius
of the guides that transport the tape is increased, the amplitude of
the LTM is attenuated more strongly and the edge quality of the
tape produced during the slitting process should be improved.
Thus, optimization of the tape path by increasing the diameter of
the guides should be considered in tape slitting machines to im-
prove the quality of future tapes.

5 Conclusion
The results obtained in this paper show that:

1. Bending stiffness is an important parameter in describing the
lateral displacement of a tape on a cylindrical guide surface.
When modeling a tape, shear forces have to be included.

2. The effect of a cylindrical guide in the tape path can be
characterized by the amplitude ratio of output and input lat-
eral tape displacement. The amplitude ratio depends on the
friction coefficient and on the contact length between tape
and guide surface, i.e., the guide radius and the wrap angle.
An increase in the guide radius of the tape guide or an in-
crease in the friction coefficient between the guide surface
and the tape improves the damping of both low and high
LTM frequencies.

3. The bending stiffness of the tape affects its trajectory over
the cylindrical guide. As the bending stiffness increases, the
tape trajectory deviates less from a straight line.

Appendix
The shear force vector V with respect to the r ,� ,z coordinate

system can be written as

V = Vv = V
�z

�s
e� − V

a � �

�s
k �A1�

The unit shear vector v can be written as

v =
�z

�s
e� −

a � �

�s
k �A2�

thus,

�v
�s

=
�2z

�s2e� −
�z

�s

��

�s
er −

a�2�

�s2 k �A3�

Combining �A1�–�A3� with dV�s�=v �V
�s ds+V �v

�s ds, V= �C
�s , and C

=EI �2z
�s2 , yields Eq. �4�.
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The authors presented a model for sliding inception that is es-
sentially based on the 1949 Mindlin approach �see Ref. �1�� for
frictional contact with extension to elastic-plastic normal loading.
According to this concept the interfacial shear stress is assumed to
be proportional to the contact pressure until it reaches a limiting
value that is related to the shear strength of the sphere bulk �see
Eq. �1��. In other words, the Mindlin approach assumes a “local
Coulomb friction law” that requires an input of a certain propor-
tionality constant that relates the shear stress distribution to the
normal pressure distribution in the contact interface. It may lead
to unrealistic situations in which the local equivalent von Mises
stress can exceed the yield strength of the sphere material. An-
other shortcoming of this concept is that sliding inception always
occurs in the contact interface regardless of the level of normal
loading. This would contradict the well known phenomenon of

material transfer, which is associated with high normal loading of
adhesive frictional contacts and requires slip below the contact
interface.

A completely different approach to frictional contact was re-
cently presented in a series of papers by Brizmer et al. assuming
full stick contact condition �see Refs. �2–4��. These three papers
deal with all the aspects of the present paper, namely, the critical
interference �2�, the elastic-plastic loading regime �3�, and the
sliding inception �4�, respectively. The full stick contact condition
captures very well the concept of an adhesive joint formed in the
contact interface �5�. It does not require any assumption of a pro-
portionality constant that relates local shear stress and local pres-
sure, and therefore it never violates the von Mises yield criterion.
Furthermore, it allows analyzing the sliding inception as a failure
mechanism and it utilizes first principles to predict the sliding
inception and to obtain the resulting corresponding static friction
coefficient and junction growth. The full stick contact condition
does not impose slip at the contact interface and hence, allows for
the possibility of material transfer under severe normal loads. Ad-
ditionally the results of Ref. �4� correlate well with some prelimi-
nary experimental results obtained by Ovcharenko et al. �5�.
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